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Abstract

We propose original, accurate and computationally ef-
ficient procedures to calibrate fluorescence microscopes
from micro-beads images. The designed algorithms
present many singularities. First, they allow to esti-
mate space-varying blurs, which is a critical feature for
large fields of views. Second, we propose a novel ap-
proach for calibration: instead of describing an optical
system through a single operator, we suggest to vary
the imaging conditions (temperature, focus, active el-
ements) to get indirect images of its different states.
Our algorithms then allow to represent the microscope
responses as a low-dimensional convex set of opera-
tors. This novel approach is shown to significantly im-
prove the estimation on a wide-field microscope. It is
deemed as an essential step towards the effective res-
olution of blind inverse problems. We illustrate the
potential of the approach by designing an original pro-
cedure for blind image deblurring of point sources and
show a massive improvement compared to commercial
software.

1 Introduction

Many recent breakthroughs in optics pertain to the
field of computational microscopy: computers play a
critical role to generate images. This evolution allowed
to observe objects with unprecedented contrasts, tem-
poral/spatial resolutions or gave access to new quanti-
tative features. To name a few examples, let us men-
tion Single Molecule Localization Microscopy (SMLM),
Structured Illumination Microscopy (SIM), Total In-
ternal Reflection Fluorescence microscopy (TIRF) or
Stimulated Emission Depletion (STED) microscopy.

A common prerequisite for these techniques is the
design of an accurate mathematical model of the op-
tical system. This step is critical since the generation
of images usually relies on an explicit or implicit inver-
sion of this model. The advent of these microscopes
therefore makes it more and more important to finely
characterize their transfer function.

The dominant model by far in the literature are
space invariant systems: the point spread function
(PSF) is identical wherever its position in space. While
simplifying the theoretical, numerical and experimen-
tal aspects, this assumption is however often unrealis-
tic. For instance, when dealing with 3D microscopy,
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‡CBI, CNRS and Université de Toulouse
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there is clear theoretical and experimental evidence
that the variations of the PSF in the z-axis need to
be accounted for [1, 2]. Similarly, the invariance in
the (x, y) plane becomes questionable for large fields
of view (see for instance Fig. 3a). Neglecting this as-
pect can have dramatic consequences. For instance, it
was shown in [3,4] that this approximation can severely
damage the reconstruction of images in single molecule
imaging, with localization errors of more than 20% for
a displacement of less than 200nm. The effects would
be even more stringent for large fields of views which
are a current challenge with the improved quality of
SCMOS detectors. These model mismatches can sig-
nificantly downgrade the performance of all computa-
tional microscopy systems and it is hence critical to
finely estimate the optical response of the system.

Existing works A well spread approach to describe
the response of an imaging system consists in using
Fourier optics [5]. This theory provides a nice descrip-
tion of the system through the pupil function of the
objective. In this domain, it is possible to derive math-
ematical models of space variant PSFs [4, 6, 7] and to
infer the parameters of these models (e.g. Zernike co-
efficients) from experimental data. There are however
two limitations to these approaches. First, they are
often based on parameters such as the numerical aper-
ture, the wavelengths, or many other physical quanti-
ties. The more parameters, the more precise the model,
but the harder it becomes to finely characterize them
experimentally. In addition, some active components
such as micro-mirrors introduce additional perturba-
tions which cannot be easily modeled or inferred. The
second problem comes from numerical considerations:
the dependency between the model and its parameters
is non-linear, which inevitably leads to non-convex es-
timation procedures, leading to local minima and ad-
ditional inaccuracies.

Instead of relying on a physical model it is possible
to directly estimate the optical response from data. We
will follow this approach in this paper. Imaging fluores-
cent micro-beads in a cover-slide in 2D or a cylinder of
agarose in 3D gives a partial idea of the system by pro-
viding an access to a few sampled and noisy scattered
PSFs. This information can be used to estimate a space
invariant system by averaging multiple micro-beads [8].
When the images are aliased it is even possible to ob-
tain a super-resolved estimation [9, 10]. It becomes
more delicate to estimate a space variant system. A
few researchers - especially in the field of astrophysics
1 - have addressed this issue. The general framework is

1In astrophysics, the PSFs variations may be due to weak
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the following: a parameterized PSF model is designed
either from physics equations or from the data itself.
The observed PSFs are then interpolated to cover the
whole field of view. In [11, 12], the authors propose to
decompose the PSFs over a low dimensional basis and
to interpolate the coefficients using thin-plate splines.
A subset of the authors proved that this method was
minimax optimal in [13] and we will propose a refined
version in this paper. It is also possible to use more
advanced interpolation methods, using e.g. optimal
transport [10], but this method would not scale com-
putationally to the large field of views considered in
here.

Our contribution While there now exists a solid
theoretical and algorithmic framework to estimate
space varying optical responses of optical systems,
these methods are often tested on synthetic data that
do not reproduce all the complexity of real microscopy
images. For instance, the estimation of a PSF re-
quires a very careful treatment of the background and
of the noise. Its interpolation requires specific care
to avoid obtaining unrealistic results far from the ob-
served responses. Our first objective is to provide pre-
cise estimation algorithms adapted to real data ema-
nating from fluorescence microscopy. The second and
arguably most original contribution is a new way to
calibrate an optical system by learning all its possible
states. Instead of trying to estimate a single operator
to describe the microscope, we propose to learn a whole
family of possible states by varying the experimental
conditions, following the recent theoretical work [14].
We finally show how the proposed methodology allows
to design new algorithms for blind image deblurring,
which significantly outperform more traditional mod-
els proposed in the literature.

2 Operator estimation

2.1 Notation

In all the paper, bold fonts refer to vectors, matrices
or vectorial functions while regular fonts refer to scalar
numbers or functions. The i-th value of a vector x is
denoted either xi or x[i]. The `p norm of a vector x is
denoted ‖x‖p. The value of a function f is f(x) and its
`p-norm is denoted ‖f‖p. The delta Dirac function at
a position x ∈ Rd is denoted δx. In all the paper, the
integers I, J , K, M and N refer to a number of compo-
nents (I=̂ size of PSF basis, J=̂ size of space variations
basis, K=̂ number of observed microbeads images, M=̂
number of observed microbeads, N=̂ number of pixels
of an image).

2.2 Preliminaries

A space varying blurring operator H : L2(Rd) →
L2(Rd) can be seen as a linear integral operator map-
ping an image u to its degraded version Hu through

gravitational lensing and reveal distant massive galaxies.

the formula

Hu(x) =

∫
Rd

L(x,y)u(y) dy. (1)

The function L(·, ·) is called kernel of the operator. It
describes the impulse response of the system at every
location z ∈ Rd of the image domain since:

(Hδz)(·) = L(·, z). (2)

The PSF S(·, z) of the system at z is defined as the
impulse response centered at 0, i.e.

S(·, z) = L(· − z, z). (3)

The function S is called the space varying impulse re-
sponse of the system. This work is based on two im-
portant assumptions.

Assumption 1 (PSF approximation ). Every PSF in
the field of view is well approximated by its projection
over a low-dimensional orthogonal basis (hi)1≤i≤I , i.e.

S(·, z) '
I∑
i=1

〈S(·, z), hi〉hi. (4)

This assumption is valid both from a theoretical and
an empirical viewpoint. It is indeed well known that
any smooth function can be well approximated by its
projection on a low dimensional subspace. Typical
bases include splines or low frequency Fourier atoms
[15]. In practice, we can also construct the family (hi)
by computing the principal component analysis of a
family of sampled PSFs. The numerical experiments
performed in the paper reveal that for our imaging sys-
tems, as little as I = 5 elements are enough to capture
all possible PSFs accurately. In addition, restricting
the PSFs to live on a low dimensional subspace is an
efficient method to denoise them as will be illustrated
in the numerical section.

Assumption 2 (PSF variations ). Letting

αi(x) := 〈S(·,x), hi〉 (5)

denote the i-th coefficient of the PSF at x ∈ Rd, we
assume that αi varies slowly in space.

The spatial variations of the PSFs are related to field
dependent aberrations. For instance, field curvatures
produce phase delays which are not shift-invariant. A
sufficient condition for having smooth variations of the
PSFs is that the phase delays vary slowly in space.
This hypothesis has been verified experimentally using
arrays of micro-beads for instance, see e.g. [3, 4].

Under Assumptions 1 and 2, a space varying
operator is completely characterized by the pair
(αi, hi)1≤i≤I . Of interest, this representation of the op-
erator also leads to fast numerical computations using
a structure called product-convolution. This decompo-
sition has been developed and improved for the last
two decades [1,16–20]. Its precise approximation rates
have been studied in [21] and we refer to the previous
references for more insight on these structures. A key
property of this decomposition is the following.
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Proposition 1 (Product-convolution [18,19,21]). As-
sume that a blurring operator H has a space varying
impulse response S defined by the tensor:

S(x,y) =

I∑
i=1

αi(x)hi(y),

then for any image u, we have

Hu =

I∑
i=1

hi ? (αiu),

where the symbol ? stands for the convolution operator.

Hence, the numerical complexity of computing a
space-varying operator is just I times the one of a con-
volution, which can be achieved efficiently using Fast
Fourier Transforms for instance.

2.3 Estimating a single operator

Under Assumptions 1 and 2, the problem of estimating
the operator reduces to recovering the low dimensional
bases (hi) and (αi), or at least their discretized coun-
terparts (hi) and (αi). In this paragraph, we describe
the general principle of the estimation of a blurring op-
erator from a single image of fluorescent micro-beads.
The general process is described in Fig. 1.

The first step consists in extracting the most relevant
PSFs in the form of small patches (see Appendix A).
Then the background is estimated and removed on each
patch independently to avoid biases in the PSFs esti-
mation. We propose an original and lightweight proce-
dure in Appendix B. A principal component analysis
is then performed to estimate the basis (hi) (see Ap-
pendix A). Each PSF is projected on this basis and the
resulting coefficients are interpolated spatially to pro-
vide an estimate of the functions (αi), which can then
be discretized as (αi) (see Appendix C). All those steps
are subtle and need to be performed carefully to obtain
precise estimates. The technical details reported in the
appendices are therefore of great importance.

As an output of the algorithm, the pair (hi,αi)1≤i≤I
provides a complete description of the operator, since
we know an approximation of the PSFs at each image
location. The integer I is a user provided parameter.

2.4 Estimating a subspace of operators

Motivation A microscope produces different trans-
fer functions depending on physical parameters that
can be hard to control. Typical examples include tem-
perature variations, focal screws, small tilts of optical
elements, surface flatness of cover-slides, slight varia-
tions of a spatial light modulator rest state,... In those
conditions, capturing a single operator (as proposed in
the previous section) to describe the microscope might
lead to model mismatches and reconstruction errors.
In this section, we propose an alternative approach
where we aim at learning a family of plausible operators
that capture all the possible states of a microscope.

The principle and the mathematical foundations be-
hind this approach (statistical properties and fields of
application) were recently established by a subset of
the authors in [14]. We refer the interested reader to
this paper for more details. We provide a simplified
description below.

Principle The first requirement to apply this tech-
nique is to image stacks of fluorescent micro-beads (in
2D or 3D) under multiple conditions. This process
can be automatized when using advanced optical ta-
bles with motorized stages and thermostatic chambers.
An alternative is to probe only the “extreme” condi-
tions (e.g. highest and lowest plausible temperatures
and tilts). After this experimental process is achieved,
we have access to a set of images (uk)1≤k≤K . The idea
of our estimation procedure is to apply the following
procedure:

1. For each image uk, extract the most relevant PSF
patches (see Appendix A) and remove the back-
ground (see Appendix B).

2. Apply a principal component analysis to the set of
patches over multiple images and keep I principal
components.

3. Apply a z-score test to discard the patches that
are likely outliers (e.g. multiple PSFs in a patch).

4. Reapply a principal component analysis to better
estimate the principal components.

5. For each image uk and each coefficient i, interpo-
late the coefficient maps αi,k (see Section C).

6. Apply a randomized principal component analy-
sis [22] to the whole set of sampled interpolation
maps (αi,k)1≤i≤I,1≤k≤K . It is often necessary to
apply a randomized SVD here since the interpola-
tion maps αi,k are typically large images.

7. Keep the J largest principal components
(aj)1≤j≤J .

8. Project each interpolation map αi,k onto the ba-
sis (aj)1≤j≤J , to obtain the matrices Γk ∈ RI×J
defined by

Γk[i, j] = 〈αi,k,aj〉.

The output of this process is two orthogonal bases
(hi)1≤i≤I (which describe the PSFs compactly) and
(aj)1≤j≤J (which describe the PSFs variations com-
pactly) as well as a set of matrices (Γk)1≤k≤K in RI×J
(which describe the operators associated to each image
uk). The operator Hk associated to the k-th input
image uk is then defined for all u by:

Hku =
∑

1≤i≤I

∑
1≤j≤J

Γk[i, j]hi ? (aj � u).
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(a) (b) (c) (d)

(e) (f)

Figure 1: Structure of the algorithm for single operator estimation. (a) Background removal procedure. (b)
Selection of well isolated PSFs. (c) Extraction of relevant PSF patches. (d) Principal Component Analysis of
the PSFs to find a low dimensional basis. (e) Projection of each selected PSF on the low-dimensional basis. (f)
Interpolation of the PSFs coefficients using radial basis functions and correction to ensure admissbile PSFs.

Reducing the family of admissible operators
The subspace of operators H that compactly describes
the possible operators is defined by

H def.
= span(Li,j , 1 ≤ i ≤ I, 1 ≤ j ≤ J)

where Li,ju
def.
= hi ? (aj � u) is a simple product-

convolution operator. The dimension of H is I × J .
However, all operators in the subspace H are not

plausible and it is possible to further restrict the family
of operators as follows. Assuming that all the extreme
conditions have been explored, we can construct the
convex hull of the coefficients Γk:

C def.
= conv(Γk, 1 ≤ k ≤ K)

def.
=

{
K∑
k=1

λkΓk, λk ≥ 0,

K∑
k=1

λk = 1

}
.

The quality of the estimate C with respect to the num-
ber of observations K was studied in [14].

2.5 Implementation details

Normalizing the operators Of importance, let us
mention that the procedures described previously suf-
fers from a well known identifiability issue. Since the
micro-beads intensity is usually unknown, the operator
can be estimated only up to multiplicative constant.
To address this problem, it is possible to replace the

matrices Γk by a normalized version

Γ̄k = Γk/
∑
i,j

Γk[i, j]

and to replace the convex hull by the conic hull

C = cone(Γk, 1 ≤ k ≤ K)
def.
=

{
K∑
k=1

λkΓk, λk ≥ 0

}
.

Normalizing the PSFs It may also happen that
the micro-beads are not perfectly identical and have
different fluorescence levels. In that case it is impor-
tant to normalize the PSF patches (after background
removal) by imposing that they sum to 1. By doing so,
the operators will be estimated without accounting for
the variations of intensity that they may induce due to
non uniform illumination. This effect can still be cap-
tured by assuming that the loss of intensity is propor-
tional to the background. It then suffices to multiply
the normalized patches by the background estimate.

We also normalize the `2-norm of the PSFs prior to
compute principal component analysis, in order to give
the same importance to every PSF.

Selecting the subspace sizes The subspace sizes
I and J are the two values that a user needs to pro-
vide in order to estimate the subspace. If the number
I (related to the subspace of PSFs) is too small, then
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the PSFs will be badly reproduced, while a value that
is too large will result noisy operators (the so-called
over-fitting in machine learning). Similarly, the num-
ber J captures the variations of the PSFs and has to be
chosen with caution. Finally, we would like I and J to
be as small as possible to reduce the computing times:
the cost of applying a product-convolution operator is
directly proportional to I.

The simplest way to choose I is to test different val-
ues on a subset of representative PSFs and keep the
lowest value that leads to a visually decent reconstruc-
tion of the PSFs. The same can be done with J . In
practice, we observed that the values I = 5 and J = 5
faithfully reproduce the operators from a perceptual
point of view.

Another possibility is to apply recent results in
statistics [23] that provide a simple and optimal way
(under a Gaussian noise assumption) to choose I and J .
The rule consists in keeping the principal components
associated to a singular value larger that 2.858 · σmed,
where σmed is the median of the set of singular val-
ues. This procedure requires computing the set of all
singular values to evaluate the median. In practice,
this is possible only for the PSF patches which are low
dimensional.

2D vs 3D PSF models All the proposed algorithms
are implemented in 2D, but their extension to 3D is
straightforward. From a practical point of view, the es-
timation of a 3D operator requires to image uniformly
scattered microbeads in a medium such as an agarose
gel. We do not report experimental results for this
problem in the paper.

3 Results

In this section, we test the proposed algorithms against
2 different data-sets: the first one is simulated while the
other comes from a wide-field microscope. We start
with the estimation of a single operator and of a sub-
space of operators. We conclude the paper with an
application to the deblurring of sparse objects.

3.1 Data-sets

3.1.1 Simulation

We generate several realistic product-convolution oper-
ators by designing a collection of admissible PSFs and
space variations. We use the following simple model to
express the PSF h at position z

h(z) = |F (ρ exp (2iπ(Φ + f(z))))|2 , (6)

where ρ is the indicator function of a disk of radius
NA/λ, F denotes the Fourier transform, f(z) models
the variation of the phase along the z axis, and

Φ =
∑
i

ciZi,

with Zi the i-th Zernike polynomial. Parameters NA
and λ denote respectively the numerical aperture and

the emission wavelength. This model allows to repro-
duce common effects encountered in PSF engineering
such as astigmatism. We display an example of sim-
ulated astigmatic PSF at different z positions in Fig.
2a. Each image is then produced by taking random
values of the different parameters ci, NA, and λ.

The spatial variations are modeled by z-variations of
the sample. This phenomenon occurs naturally when
facing spherical aberrations of non perfectly flat cover-
slips. We use random polynomials of low degree to
generate various operators. An additive background
is generated with a smooth Gaussian random process,
and the final image is degraded with Poisson noise, see
Fig. 2 for a simulation example.

(a) Simulated micro-beads image.

(b) Zooms on a few PSFs of the original image.

(c) Operator estimated from the image in Fig. 2a.

(d) Operator estimated from a family of 50 images.

Figure 2: Simulation experiment: synthesized opera-
tors are applied to randomly scattered Dirac masses
(512× 512 pixels).

3.1.2 Real data

In all experiments, we used a perfectly plane mono-
layer of micro-beads of a 100nm diameter. There is no
refractive index mismatch between the cover-slide and
the immersion oil, allowing to avoid spherical aber-
rations. The data-set is composed of micro-beads of
100nm of diameter acquired with a standard wide-field
microscope. The camera is a CMOS with pixel size
of 43nm and produces images of 2304 × 2304 pixels.
We collected 18 stacks of fluorescent micro-beads, each
one is 8µm thick and is composed of 21 z-stacks. We
keep only the 5 central slices since the beads are too
degraded when far away from the focal plane. This
amounts to a total of 90 images and more than 9700
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2D PSFs. We display one image in Fig. 3a.

(a) 2304 × 2304 image of fluorescent micro-beads

(b) Zooms on a few PSFs of the original image.

(c) Estimated operator from the image in Fig. 3a.

(d) Operator estimated from a family of 18 images.

Figure 3: Image of micro-beads taken with a wide field
microscope and estimation results. The contrasts have
been stretched for a better visualization.

3.2 Estimating operators

In this section we illustrate some features of the pro-
posed methods by estimating a single operator and
a subspace of operators from the image of micro-
beads generated by the previously described micro-
scopes. Each experiment is performed on a workstation
equipped with Intel Xeon E5 and a GPU card Nvidia
Tesla K20c from 2012 (2019 technologies are expected
to be 4 times faster).

3.2.1 Simulation

We apply the proposed estimation procedures both for
a single operator and for a subset of operators. The
computing time for a single operator is 15 seconds when
estimating 3 principal elements for the PSFs and 3
principal components to describe the coefficients vari-
ations. To estimate the subspace of simulated oper-
ators, we used 50 different micro-beads images. The
computing times increased to 500 seconds (i.e. 10 sec-
ond per image). The results are displayed in Fig. 4. Of
importance, notice that the results obtained with the
subspace of operators are based on micro-beads images
generated with different operators and in particular
different PSFs. Despite this higher variety of possible
shapes, the method is able to automatically infer the

common patterns and to achieve better denoising and
estimation performance thanks to the redundancy.

The estimated operators can be visualized by apply-
ing them to a Dirac comb, see Fig. 2c and 2d. To com-
pare the quality of reconstruction, we simply evaluate
a rescaled version `2 distance between the resulting im-
ages and the true one. It is compulsory to rescale the
distance, since there is an inherent ambiguity between
the micro-beads intensity and the microscope gain.

Estimating a subspace of operators rather than a sin-
gle operator improves the quality of the reconstruction
allowing to go from 50% to 15% of relative distance be-
tween the estimation and the ground truth. While this
figure is not per se impressive, the PSFs family is no
longer corrupted with noise, and the coefficients maps
family seems smoother. It is likely that other metrics
would better reflect this fact.

3.2.2 Wide-field microscopy

We estimate a single operator and a whole subspace of
product-convolution operators based on the 2304×2304
images from the data-set from wide-field microscopy.
We set I = 5 and J = 5. Estimating a single operator
takes about 150 seconds using 120 PSFs, while estimat-
ing the whole subspace takes about 3 hours (i.e 2 min-
utes per operator) using 9700 PSFs. These computing
times are remarkable given the computer features and
that the complete dataset weighs about 5Gb.

The PSFs and space variations bases are displayed
in Fig. 5 and the estimated operators are displayed in
Fig. 3. Similarly to the previous section, we observe
that the basis and operators obtained using a large set
of images is significantly less noisy. While the principal
components beyond 3 contain a significant amount of
noise for the single image, the 5-th component of the
subspace approach still seems to contain useful geo-
metrical features. The improvement of the coefficients
maps is harder to evaluate since the corresponding con-
volution kernels have changed. Overall, learning the
subspace of operators led to a significantly improved
reconstruction of the operator with no visible residual
noise remaining in Fig. 5.

3.3 Blind deblurring

Image deblurring is a technique than can lead to sig-
nificant improvements of image resolution and qual-
ity. In most acquisitions, this technique is however
neglected since it requires strong skills both in optics,
image processing and computer science. In particular,
the prior calibration of a microscope is critical: model
mismatches can lead to dramatic performance losses
and oftentimes lead biologists to prefer using the raw
images. In this paragraph, we show that the proposed
methodology of learning a whole family of operators to
describe the microscope allows to avoid a precise cal-
ibration before each experiment and therefore signifi-
cantly eases the application of a deblurring algorithm.

The key observation is that identifying an opera-
tor from a single degraded image becomes rather easy
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(b) Subspace estimation

Figure 4: Estimation on simulated operators. We compare the estimation with a single operator (left) and with a
set of 50 randomly sampled operators (right). Top: the PSF basis (hi)1≤i≤3. Bottom: the space variations basis
(aj)1≤j≤3. Observe that the PSF basis is significantly less noisy and that the space variations are significantly
smoother when estimating over the set of 50 images.

when the operator depends linearly on a small number
of parameters. In particular, if we know beforehand
that the degraded image contains a few point sources,
we show that a simple constrained least squares prob-
lem allows to recover the operator in Appendix D. We
then design an original non-blind deblurring algorithm
with a known operator for sparse + smooth images.
The overall algorithm is called BSS for Blind Sparse +
Smooth deblurring.

To assess the proposed methodology, we test the pro-
posed algorithm on a real image of fluorescent micro-
beads aligned along filament like structures. We per-
form this experiment on an image obtained with the
same wide-field microscope as the one used to collect
data-set from the real data. The blurry image is ac-
quired at a distance 300nm from the focal plane Fig.
6a and 6b, (i). For comparison, the same sample at the
focal plane is displayed in Fig. 6b, (ii).

We propose a comparison with the software Huygens
Professional version 19.04 (Scientific Volume Imaging,
The Netherlands). It allows to perform a patch-wise
deblurring of the full image. Here, we used a 3x3 patch
decomposition. On each patch, the PSF is chosen theo-
retically based on the specifications of the microscope.
The reconstruction is displayed in Fig. 6b, (iii).

While the Huygens correctly removes the back-
ground, it fails to really increase the resolution: the
micro-beads still consist of large spots which cannot be
easily separated. The output of our blind deblurring
algorithm in Fig. 6b, (iv) on its side is really convinc-
ing. It rather faithfully reproduces the image obtained
at the focal plane in Fig. 6b, (ii) with an even bet-
ter resolution. Observe that this is a really challenging
setting: the input image has a significant amount of
noise and while the PSFs on the left part are rather
small, their diameter is about 40 pixels on the right of
the field of view.

4 Conclusion

We proposed a set of fine algorithms to learn a set
of product-convolution representations of optical re-
sponses in fluorescence microscopy. One of the main
originality is to estimate a subspace of operators to
capture the whole diversity of possible space-varying
blurs of a given microscope. This is in sharp contrast
with existing approaches which simply characterize the
microscope by a single PSF, or - at best - by a single
unstationary operator.

An important outcome of this work is that it strongly
improves the identifiability in blind-inverse problems
such as blind deblurring or blind super resolution.
These arguably constitute two of the most challenging
issues in computational imaging. For instance, recent
theoretical progresses based on lifting techniques [24]
require the prior knowledge of a low dimensional sub-
space. We have proposed an original blind deblurring
approach coined BSS to efficiently solve this problem
when imaging point sources with a smooth background.

Future works will consist in extending the existing
codes to 3D images, providing an open-source toolbox
together with realistic responses of microscopes. This
will enable the optics and signal processing communi-
ties to test their algorithms against realistic operators.

We expect the proposed work to have far reaching
applications ranging from the metrology of imaging
systems to new advanced microscopy methods such as
supercritical angle localization microscopy, metal en-
hanced fluorescence, polarization microscopy. All these
applications require highly accurate models which are
currently unavailable for large fields of view.
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(a) Operator estimation with a single image containing 94 micro-beads, see Fig. 3a. Top: the PSF basis (hi)1≤i≤5.
Bottom: the space variations basis (aj)1≤j≤5.
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(b) Subspace estimation with 90 images and 9700 PSFs.

Figure 5: Learning the PSF and space variations bases for a standard wide-field microscope.
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A PSFs selection and processing

Rough PSF detection The rough detection of
PSFs on an image u is quite easy: we simply iden-
tify the maxima of the Laplacian of a blurred version
of u and keep those above a user-provided threshold.

Rejection of bad patches The analytical expres-
sion of a PSF yields functions that are not compactly
supported. However, they decay quite fast at infinity
(an Airy pattern decays as 1/|x|3) and the information
brought by the image is dominated by noise far away
from the PSF center. In what follows, we let r denote
an upper-bound on the maximal radius of a PSF. To
avoid patches containing more than one PSF or PSFs
too close to the image boundaries, we select the subset
of PSFs with a center being at least r pixels from the
image boundary and 2r pixels from the other centers.
At the end of this procedure, we obtain a set of patches
containing isolated PSFs.

Shift and re-sampling The maxima of the discrete
Laplacian are localized on the pixel grid and might not
correspond to the PSF center. In addition, there is
no reason for the micro-beads to be perfectly centered
on a pixel. To obtain a better PSF centering, we find
the maxima of correlation with a continuous Gaussian
function. This allows us to re-interpolate the patches
around this center using a bi-cubic interpolation. The
output is a sequence of patches (pm)1≤j≤M .

Compact supports To avoid learning noise, we se-
lect two radii rext ≥ r beyond which the PSF image
is dominated by noise. In practice, we set rext = 1.2r.
We then apply a multiplier to each patch that smoothly
decays to 0 from r to rext (a bump function). The ana-
lytical expression of the radial multiplier function m(t)
is given by

m(t) =


1 if t < r,

0 if t > rext,

exp

(
−1

1−( t−r
rext−r )

2 + 1

)
otherwise.

Principal component analysis Once all selected
PSFs have been treated, we perform a principal com-
ponent analysis to obtain an optimal representation
basis. Depending on the number of sampled PSFs, we
can use a standard singular value decomposition or a
randomized one [22].

Finer rejection of false detections Finally, it may
happen that the initial selection of patches did not
screen out all unwanted PSFs (e.g. too degraded or
multiple ones on a patch). To get a finer selection and
avoid biases, we project all the PSFs on the learned

basis (hi)1≤i≤I . We then remove the coefficients in
RI obtained by the projection which are likely out-
liers. We simply use a z-score test: we evaluate the
empirical mean µi and variance σi of each coefficient
and discard the coefficients that deviate by more than
3σi from their mean. Once the unlikely patches have
been removed we recompute a PCA on the remaining
patches to get a better estimate of (hi)1≤i≤I .

B Background removal

Getting a correct estimate of the background is a criti-
cal step since not accounting for it would strongly bias
the PSFs estimates. The background is due to the
auto-fluorescence of the sample and may vary spatially
due to a non homogeneous illumination. In general this
variation is smooth, allowing for an efficient estimation
described hereafter.

We assume that the PSF is dominated by noise in
a domain ω made of pixels outside a disk of radius r
from the patch center. In this region, the image signal
is therefore constituted of background and noise only.
Assuming that the background is a smooth component,
we can try to fit a low degree polynomial to these pix-
els. Letting pj denote the j-th patch, this amounts to
solving the following quadratic problem:

inf
λ∈RP

1

2
‖pj −Mλ‖2l2(ω), (7)

where M = [m1, . . . ,mp] ∈ R|ω|×P is a matrix con-
taining the sampled low degree monomials mp and
λ represents the coefficients of the polynomial. This
problem boils down to a low dimensional linear system
which can be solved with a linear conjugate algorithm.
Letting λ? denote the solution of this problem, the es-
timated background is simply Mλ?. In practice, we
simply polynomials of order 2. In 2D, this yields the
value P = 6 for the monomials 1, x, y, xy, x2, y2.

C Estimating space variations

Thin-plate approximation Once a basis (hi)1≤i≤I
is computed (see section A), it is possible to project
each noisy patch on this basis to get a low dimensional
representation of the selected PSFs. This provides an
estimate βi,m = 〈pm,hi〉 of the values αi(zm). In order
to estimate the space variations, we can use surface
fitting techniques on the set (zm, βi,m)1≤m≤M to get
an approximation of the functions αi.

There exists numerous surface fitting techniques.
Following the numerical experiments led in [11], it
seems that the use of radial basis function [25] is sig-
nificantly more efficient than other approaches in the
context of astronomy. We therefore resort to this tech-
nique.

Radial basis functions approximation can be inter-
preted as a variational problem in the framework of
Reproducible Kernel Hilbert Spaces. In this context,

10



the estimators α̂i of αi can be expressed as

α̂i = argmin
α∈H2(R2)

1

2

M∑
m=1

wm|α(zm)−βi,m|2 +
η

2
|α|2H2 , (8)

where |α|H2
def.
= 〈∆u,∆u〉L2(Rd) and where η > 0 is

a parameter that allows to trade off the proximity to
the samples βi,m for the smoothness of the surface. In
order to balance the importance of each PSFs in the
approximation, the weights wm are chosen equal to the
area of the Voronöı cell associated to each location zm.

The solution of (8) is known to be a thin-plate spline
[15] and can be computed by solving a (M+3)×(M+3)
linear system.

In what follows, we will let αi or α̂i denote a version
of αi sampled on a Euclidean grid.

Enforcing realistic PSFs There is no reason for the
thin-plate approximation method to generate realistic
PSFs everywhere in the field of view. Indeed, the co-
efficients are interpolated independently of each other
while there exists strong dependencies between them.
In practice we observed that the previous method was
not good at extrapolating the PSFs outside of the con-
vex hull of the sampled PSFs. Important features like
positivity for instance might be lost far away from the
sampled PSFs. To avoid this effect, we propose an
original framework below.

The procedure for estimating the PSF basis (hi) also
yields the projected coefficients (βi,m)1≤i≤I,1≤m≤M .
We propose to define the set of admissible PSFs co-
efficients as

B def.
= cone(β·,m, 1 ≤ m ≤M) ⊂ RI .

This roughly amounts to say that admissible PSFs
correspond to the conic hull of the already observed
and denoised PSFs. Taking the conic hull seems nat-
ural: if a PSF is in the set, all its scaled versions
by a non-negative factor also belong to the set. Let
α = (α1, . . . ,αI) ∈ RI×N denote a - possibly unfeasi-
ble - estimate of interpolation map. We can generate a

feasible one α̂ by projection: α̂[n]
def.
= ΠB(α[n]) for all

1 ≤ n ≤ N .

The projection algorithm Let B =
[β·,1, . . . ,β·,M ] ∈ RI×M denote the matrix of ob-
served coefficients. Projecting the coefficients α ∈ RI
of a PSF onto B amounts to solving the following
convex variational problem:

inf
λ∈RM ,λ≥0

1

2
‖Bλ−α‖22.

It can be solved using an accelerated projected gradient
descent [26].

Unfortunately, if M is very large, applying matrix-
vector products with B for every pixel n ≤ N becomes
untractable and we need to simplify the cone C. Fol-
lowing [27], we propose to select a small subset of the
columns of B using a simple greedy algorithm. We

start with a matrix B̂ containing a single vector equal
to the average of the columns of B. We then update it
by iteratively adding the column inB which maximizes
the angle with the current conic hull of the columns in
B̂. We stop when the angle is below a given threshold.
In our experiments with M = 14000 PSFs and I = 5,
we could obtain a very good approximation of the hull
with only 20 components instead of 14000, making the
projection algorithm relevant even for very large im-
ages.

D BSS-deblurring

Here, we propose a method called BSS-deblurring,
where BSS stands for Blind Sparse+Smooth. Given
a blurred image u0, the method provides an estimate
of the associated operator and a deblurred image. It
consists of two separate steps: first the operator is es-
timated using isolated micro-beads in the image. This
estimate is then used inside an original variational
problem.

Identifying the operator We assume that the user
is able to select P patches out of u0 supported on
(ωp)1≤p≤P that contain isolated micro-beads. The
patches pp are assumed to be well centered and with-
out background, which can be achieved using the pre-
viously proposed methods. We also assume that each
micro-bead can have a different amplitude lying in the
interval [a, b] with 0 < a < b.

Our aim is to estimate a discrete operatorH : RN →
RN of the form:

Hu =
∑

1≤i≤I

∑
1≤j≤J

Γ[i, j]hi ? (aj � u)

where the pairs of orthogonal bases ((hi)i, (aj)j) are
known and the coefficients (Γ[i, j])i,j are unknown.

By projecting the patch pp onto the PSFs basis (hi)i,
we obtain the coefficient cp,i = 〈pp,hi〉 which is a noisy
estimate of the interpolation map αi at the position zp:

Hδzp =
∑

1≤i≤I

∑
1≤j≤J

Γ[i, j]αi(zp)hi ≈
∑

1≤i≤I

cp,ihi.

We propose to identify Γ by solving the following bi-
linear inverse problem:

argmin
Γ∈C,g∈[a,b]P

1

2

∑
1≤p≤P

∥∥∥∥∥∥
∑

1≤i≤I

∑
1≤j≤J

gpΓi,jαj − cp,i

∥∥∥∥∥∥
2

2

,

(9)
where gp is the unknown amplitude of the bead at posi-
tion zp and C is the conic hull of the sampled operators.

We solve this problem using an alternating mini-
mization algorithm: we first solve the problem w.r.t.
g with fixed Γ and then solve the problem w.r.t. Γ
with fixed g. The individual minimization problems
are convex and can be solved with accelerated pro-
jected gradient descents.

If the amplitudes g were known, the problem (9)
would boil down to a constrained least square problem
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of size I × J . Since each patch pp yields I coefficients,
the condition P ≥ J should be enough to ensure the
identification. It is remarkable that such a low value
(typically 5) is enough to identify the operator! Higher
values of P would however make the method more ro-
bust to noise.

To validate the proposed approach, we randomly se-
lect an operator in the conic hull C, and apply it to a
grid of 25 Dirac masses (for a field of view of 2304×2304
pixels). A significant amount of noise is added to the
image and the true locations of the beads are randomly
perturbed (with Gaussian random variable of variance
0.5). We then estimate the operator and display the
result in Figure 7.

(a) SNR 1.5dB (b) (c) SNR 17.6dB

Figure 7: Identification of an operator in simulated
images. a) Noisy crops used for identification. b) Im-
pulse responses of the true operator at some locations.
c) Estimated operator. Notice that the method is able
to denoise the PSFs very efficiently.

We finally apply the method to the image used in
the blind-deblurring example in Figure 6a. We display
the reconstructed operator in Figure 8.

Sparse+Smooth-deblurring Let u0 ∈ RN denote
a blurry image and H : RN → RN a discrete integral
operator. We aim at deblurring an image composed of
a sparse component u1 (e.g. scattered micro-beads),
and a smooth component u2 (e.g. auto-fluorescent
background). In order to recover u1 and u2, we pro-
pose to solve the following original variational problem:

inf
u1∈RN

+ ,u2∈RN
+

1

2
‖H(u1+u2)−y‖22+γ1‖u1‖1+γ2‖∆u2‖22.

The term 1
2‖H(u1 + u2) − y‖22 is the data fitting

term, the term γ1‖u1‖1 promotes the sparsity of the
u1 component and the term γ2‖∆u2‖22 promotes the
smoothness of u2. The non-negative parameters γ1
and γ2 allow to balance each term and have been tuned

Figure 8: Identification of a real operator with 38
micro-beads. Top: 3 patches used for the estimation.
Bottom: estimated PSFs.

manually so as to obtain a visually pleasant result.
This problem can be solved efficiently using acceler-
ated proximal gradient descent algorithm [26].
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