
Fast Wavelet Decomposition of Linear Operators through

Product-Convolution Expansions

Paul Escande ∗ Pierre Weiss †

July 27, 2020

Abstract

Wavelet decompositions of integral operators have proven their efficiency in re-
ducing computing times for many problems, ranging from the simulation of waves
or fluids to the resolution of inverse problems in imaging. Unfortunately, computing
the decomposition is itself a hard problem which is oftentimes out of reach for large
scale problems. The objective of this work is to design fast decomposition algorithms
based on another representation called product-convolution expansion. This decom-
position can be evaluated efficiently assuming that a few impulse responses of the
operator are available, but it is usually less efficient than the wavelet decomposition
when incorporated in iterative methods. The proposed decomposition algorithms, run
in quasi-linear time and we provide some numerical experiments to assess its perfor-
mance for an imaging problem involving space varying blurs.

1 Introduction

The efficient computation of linear operators and their inverses is paramount for nearly
any scientific computing problem. A large number of numerical approaches have been
developed over the years, such as low rank decompositions, product-convolution expan-
sions [12], hierarchical matrices [20] or wavelet decompositions [24, 3]. They can yield
huge speed-ups for the practical resolution of problems ranging from partial differential
equations [6, 28] to inverse problems [11]. We can also expect these ideas to play a growing
role in the design of efficient neural networks [14].

A serious hindrance to their popularization is however the high cost to perform the
decomposition in a large scale setting. For a square matrix in RN×N , the cost of a naive
decomposition is typically O(N3), which is incompatible with many current numerical
challenges which frequently satisfy N � 106. The main objective of this paper is to
reduce the computational burden of decomposing an operator in an orthogonal wavelet
basis using an alternative decomposition called product-convolution.

Product-convolution expansions Let E denote a finite dimensional vector space of
discrete d dimensional functions. The functions in E are defined on Ω = {1, . . . , N1} ×
. . . × {1, . . . , Nd} with N =

∏d
i=1Ni. Throughout the paper we will work with periodic

∗Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France, paul.escande@univ-amu.fr
†Institut de Mathématiques de Toulouse, IMT-UMR5219, France and Institut des Technologies

Avancées en Sciences du Vivant, ITAV-USR3505, CNRS and Université de Toulouse, Toulouse
pierre.armand.weiss@gmail.com

1

boundary conditions, i.e. consider that Ω is a discretization of the torus Td. Consider a
linear operator G defined for all f ∈ E by

G : f 7→
∑
y∈Ω

K(·, y)f(y), (1.1)

where K ∈ RN×N is the matrix form (the kernel) of the operator. If all the impulse
responses S(·, y) = K(· + y, y) are well approximated by their projections on a low-
dimensional subspace U = span (uk, 1 ≤ k ≤ m), it is possible to construct a product-
convolution expansion H of G defined as

Hf =
m∑
k=1

uk ? (vk � f), (1.2)

where ? denotes the convolution operator, uk ∈ E is a convolution filter, � denotes the
point-wise multiplication and vk ∈ E is a multiplier. The multipliers V = (v1, . . . , vm) can
be defined as the projections of the impulse responses on U , i.e. vk(y) = 〈S(·, y), uk〉 for
all y ∈ Ω, see [12]. From a numerical perspective, the expansion (1.2) can be evaluated
efficiently using fast Fourier transforms with a complexity O(mN log(N)).

Product-convolution expansions have appeared at least 3 decades ago and have been
given different names in various fields, see e.g. [5, 25, 15, 17, 10, 1]. A remarkable aspect
of these expansions is their ability to interpolate linear operators from scattered impulse
responses: the bases U and V can be evaluated efficiently for operators with slowly varying
impulse responses. Assuming that a few impulse responses S(·, yi) are known at scattered
locations yi ∈ Ω, it is possible to evaluate the basis U using a principal component analysis
and to interpolate the projection coefficients over the domain Ω to obtain the multipliers
V. This process not only provides a minimax estimate of the operator G [4], but also a
compact representation compatible with fast numerical algorithms. We refer the reader to
[12] and Section 3.3 of this paper for more insight on the construction and approximation
properties of this decomposition.

Wavelet decompositions On the other hand, multi-scale representations of integral
operators have led to practical breakthroughs in the theoretical and numerical analysis of
partial differential equations and inverse problems. Despite their considerable impact for
the compact representation of functions, especially in the field of signal processing, the
role of wavelets for coding operators still seems marginal, at least at an industrial level.

A possible explanation is the high cost related to the computation of the wavelet
representation of an operator. Let (ψλ)λ∈Λ denote an orthogonal wavelet basis and Ψ∗ :
E → RN denote the associated forward wavelet transform. The wavelet representation of
G in the wavelet basis is the matrix Θ = (θ[λ, µ])λ,µ∈Λ of coefficients θ[λ, µ] = 〈Gψλ, ψµ〉.
For an arbitrary operator G, computing these coefficients has a complexity of order O(N3)
operations since the operator G needs to be applied to each of the N wavelets. This cost
is prohibitive for large N .

The contribution We address this issue by providing a fast decomposition algorithm
for product-convolution operators. Its complexity roughly scales as O(mN log2

2Nη
−α) for

any arbitrary precision η > 0, where α > 0 is a quantity that depends on the smoothness
of the operator and on the number of vanishing moments of the wavelet basis.

One may wonder what is the interest of using a wavelet decomposition if a product-
convolution is already available. The reason comes from the higher numerical efficiency of
wavelet decompositions when incorporated in iterative methods. For instance, we showed

2

in [11, 13] that the simultaneous sparsity of operators and images in the same orthogonal
wavelet basis could be leveraged to accelerate the resolution of inverse problems by one or
two orders of magnitude. The gain comes from two complementary facts:

• the method can operate in the wavelet domain only and avoid to continuously swap
between different domains such as the spatial domain, the Fourier domain and the
wavelet domain.

• In addition, efficient diagonal preconditioners can be designed since the matrix Θ is
concentrated mostly along its diagonal. This idea is often referred to as a multi-level
preconditioner [7].

We will illustrate the power of these ideas on a practical image deblurring problem.

2 Preliminaries

Let E denote the linear space of d-dimensional discretized functions ofN samples defined on
Ω = {1, . . . , N1}×. . .×{1, . . . , Nd} with

∏d
i=1Ni = N . This space E will be often identified

with RN through a bijective mapping ω : Ω→ {1, . . . , N}. To simplify the discussion, we
assume that the numbers N1 = . . . = Nd = 2J and we use circular boundary conditions.
Assuming that the number of pixels is large enough, methods and analyses proposed in
this work can be extended to any boundary conditions by using boundary wavelets.

We let f(x) denote the value of a function f at x, v[i] denote the i-th coefficient of a
vector v and A[i, j] denote the (i, j)-th element of a matrix A.

Let A be an N × N matrix, we let suppA denote its support i.e. the set of indexes
associated to a non-zero coefficient: suppA =

{
(i, j) ∈ {1 . . . N}2 |A[i, j] 6= 0

}
. The ap-

proximation rates stated in this paper will be expressed with respect to the spectral norm
‖ · ‖2→2 defined by

‖A‖2→2 = sup
f∈RN ,‖f‖2=1

‖Af‖2.

2.1 One dimensional orthogonal wavelet bases

We first recall the construction of wavelets on the continuous interval [0, 1]. Let φ and ψ
denote the scaling and mother wavelets. Translated and dilated versions of the wavelets
are defined, for j ≥ 0, as follows

φj,n = 2j/2φ
(
2j · −n

)
,

ψj,n = 2j/2ψ
(
2j · −n

)
,

with n ∈ {0, . . . , 2j − 1}. A mother wavelet ψ is said to have M vanishing moments when

∀0 ≤ m < M,

∫
[0,1]

tmψ(t)dt = 0.

We now detail the construction of a 1D discrete orthogonal wavelet transform. A
function f : [0, 1] → R can be discretized leading to a vector v ∈ R2J samples. The Fast
Wavelet Transform is derived from the observation that wavelets φ and ψ are associated
to a filter bank (h, g) [23, Theorem 7.7, p. 348]. From these filters (h, g) the discrete
wavelets φj and ψj can be defined recursively using convolutions and sub-sampling. Setting
φJ,n = 1{n}, we get for 0 ≤ j < J

φj,l =
∑
n∈Z

h[n− 2l]φj+1,n, and ψj,l =
∑
n∈Z

g[n− 2l]φj+1,n.

3

We assume that the wavelets are compactly supported i.e. supp(ψ) = [−δ+1, δ]. Note
that δ is related to the number of vanishing moments of the mother wavelet. Let M be
this number, we have δ ≥M , with equality for Daubechies wavelets, see e.g. [23, Theorem
7.9, p. 294]. Together with [23, Theorem 7.5, p. 286] and g[i] = (−1)1−ih[1−i], we deduce
that supph = suppφ = [0, 2δ − 1] and supp g = [−2(δ − 1), 1]. Therefore for 0 ≤ j ≤ J ,

suppφj,0 =
[
0, (2J−j − 1)(2δ − 1)

]
and

suppψj,0 =
[
−(2J−j − 1)2(δ − 1), (2J−j − 1)

]
.

2.2 Orthogonal wavelet bases on E

In dimension d, we use isotropic separable wavelet bases, see, e.g., [23, Theorem 7.26, p.
348]. Let l = (l1, . . . , ld). Define ρ0

j,n = φj,n and ρ1
j,n = ψj,n. Let e = (e1, . . . , ed) ∈ {0, 1}d

and Tj = {0, . . . , 2j − 1}d. For the ease of reading, we will use the shorthand notation
λ = (j, e, l) and |λ| = j. We also let J = 1

d log2N and

Λ =
{

(j, e, l) | 0 ≤ j ≤ J − 1, l ∈ Tj , e ∈ {0, 1}d
}
. (2.1)

The wavelet ψλ is defined by ψλ(x1, . . . , xd) = ψej,l(x1, . . . , xd) = ρe1j,l1(x1) . . . ρedj,ld(xd).
With these definitions, every signal f ∈ E can be written as

u = 〈u, ψ0
0,0〉ψ0

0,0 +
∑

e∈{0,1}d\{0}

J−1∑
j=0

∑
l∈Tj

〈u, ψej,l〉ψej,l

=
∑
λ∈Λ

〈u, ψλ〉ψλ.

Finally, we let Ψ∗ : E → RN denote the discrete forward wavelet transform and Ψ its
inverse. We refer to [23, 9, 8] for more details on the construction of wavelet bases.

3 Main results

3.1 Assumptions

The main result will be stated under mild regularity and decay assumptions on the kernels
uk defined below.

Definition 3.1 (Smoothness class Aα [7, p. 281]). A convolution kernel uk is said to be
α-asymptotically smooth if there exists constants C ≥ 0, α > 0 and a compactly supported
wavelet basis with dαe vanishing moments such that the following inequality holds:

|〈uk ? ψλ, ψµ〉| ≤ C2−(d/2+α)||λ|−|µ||ϑ(λ, µ)−(d+α), (3.1)

where
ϑ(λ, µ) := 1 + 2min(|λ|,|µ|)dist(suppψλ, suppψµ)

measures the distance between the wavelets supports.

Remark 3.1 (Asymptotic smoothness in a continuous setting). In a continuous setting, it
can be shown that sufficient conditions for the kernels uk to be α-asymptotically smooth
is uk ∈Wα,∞(Rd) with the following decay property

|∂puk(x)| ≤ Ck (1 + ‖x‖2)−(|p|+d) , (3.2)

for all multi-indexes p with |p| ≤ α. Hence, the α smoothness property mostly boils down
to regularity properties of the kernel. The larger α, the more regular the kernels.

4

Our main results will be stated under the following assumptions.

Assumption 3.1 (Regularity of the kernel).

• the operator H has the form (1.2).

• there exists α > 0 such that uk ∈ Aα for all 1 ≤ k ≤ m.

• the mother wavelet is compactly supported on a hypercube of sidelength 2δ.

Overall the set of assumptions in Assumption 3.1 describes a fairly large variety of oper-
ators comprising blurring operators [11], singular integral operators and pseudo-differential
operators [7].

3.2 The algorithm and its guarantees

The main objective of this paper is to efficiently compute a sparse approximation Θ̃ of the
wavelet representation Θ of H defined by

Θ = Ψ∗HΨ. (3.3)

The proposed algorithm heavily relies on the peculiar structure of product-convolution
expansions. In what follows, we let Uk denote the convolution operator with uk, Vk =
diag(vk) denote the k-th multiplier, Ak = Ψ∗UkΨ denote the wavelet representation of
Uk and Bk = Ψ∗VkΨ denote the wavelet representation of the multiplier. The proposed
methodology is described in Algorithm (1).

Algorithm 1 Decomposition of product-convolution in an orthogonal wavelet basis

Require: A precision η > 0, the
Set εk = η

m‖vk‖∞ for all 1 ≤ k ≤ m
Set Θ̃ an empty sparse matrix
for all k = 1→ m do

Compute Ak (by exploiting the convolution structure) . O(N log2N)
Threshold Ak to get an εk approximation Ãk . O(N logN)
Construct Bk (using a sparse cascade algorithm) . O(N logN)

Compute Ck = ÃkBk . O(N logNε
−d/t
k)

Accumulate Θ̃← Θ̃ + Ck . O(N logNε
−d/t
k)

end for
return Θ̃ an η-approximation of Θ

Our main theoretical result reads as follows.

Theorem 3.1. Under Assumption 3.1, Algorithm 1 produces a matrix Θ̃ satisfying ‖Θ−
Θ̃‖2→2 ≤ η in O

(
δd+1mmax(1,d/α)N log2

2Nη
−d/α) operations. Furthermore, the number of

coefficients in Θ̃ can also be bounded above by O
(
δdN log2

2Nη
−d/α).

Remark 3.2. In many applications, the kernels of integral operators are smooth. In par-
ticular, for α ≥ d the term max(1, d/α) = 1. The complexity is thus linear in m. Remark
3.1 shows that this is satisfied when the kernels uk are of class W d,∞.

Remark 3.3. The bound on the number of coefficients in Θ̃ provided by Theorem 3.1 allows
to bound the complexity of matrix-vector products with Θ̃. If we assume that the operator
G belongs to the class Aα, a direct application of [3, 11] (see also Theorem 5.1), shows

5

that one can construct an η approximation G̃ of G, containing no more than O(δdNη−d/α)
coefficients. The result of Theorem 3.1 is therefore optimal up to the log2N factor. We
believe that it could be discarded by assuming further regularity of the multipliers vk. We
could then use an additional approximation in place of Bk, in the exact same fashion as
for the Ak’s.

3.3 Getting a product-convolution expansion

While the last two items in Assumption 3.1 are now well established, the combination
with the first one may seem problematic. We review some numerical approaches to design
product-convolution expansions below.

3.3.1 Naive interpolation of impulse responses

The simplest and probably the most widespread product-convolution expansions in image
processing are based on the assumption of slow variations of the impulse responses of the
operator in the domain Ω. Under this assumption, it is possible to set

uk = S(·, yk)

i.e. (uk)
m
k=1 are the impulse responses of the operator at some locations (yk)

m
k=1. By

setting the locations (yk)
m
k=1 as a coarse Euclidean grid [25], it is possible to keep a small

value for m. The functions (vk)
m
k=1 are then used to interpolate the impulse responses

i.e. they define a partition of unity with the constraints vk(yk) = 1 for all 1 ≤ k ≤ m.
The choice of these vk are discussed in many works, without particular guarantees on the
approximation obtained. We refer the interested reader to [10] for a nice overview and
[12] for approximation rates.

In the context of PDEs, product-convolution expansions are encountered in Schur com-
plement methods for solving PDEs, Dirichlet-to-Neumann maps and in PDE-constrained
optimization as Hessians. In [1], the functions (uk, vk)

m
k=1 are chosen as above, but instead

of being defined on a Euclidean grid, locations (yk)
m
k=1 are adaptively sampled to best

approximate the operator with a fixed number m.

3.3.2 Interpolating expansions of impulse responses

Under mild regularity assumptions of the impulse responses, product-convolution expan-
sions can be designed from scattered impulse responses in a more efficient fashion than
what was just described [15, 16, 4].

The main idea is to use a principal component analysis of the observed impulse re-
sponses S(·, yk) to obtain a low-dimensional orthogonal basis (uk). The coefficient maps
(vk) can then be computed by interpolating the known projection coefficients at the po-
sitions (yk). We showed in [4] that this approach was optimal from an approximation
theoretic point of view.

3.3.3 Singular value decomposition

When the operator G in (1.1) is fully known, the optimal way (in Frobenius norm) for
fixed m to get a product-convolution expansion of an operator (1.1) is to construct a low-
rank approximation of the SVIR S (and not the kernel K). For many practical problems,
the SVIR S has a much lower rank than the kernel K. A typical example is the identity
operator which has a kernel of rank N and an SVIR of rank 1. We refer to [12] for more
examples and mathematical insights.

6

The low-rank decomposition of space varying impulse response can be achieved by
performing a singular value decomposition (SVD) on S. For most problems, this approach
is however intractable due to the size of matrices S.

Alternatively, we may just assume that the action of an operator with a matrix form
S can be evaluated on any vector. The couples (uk, vk)

m
k=1 can now be obtained using

a randomized SVD of the matrix S [22]. The complexity of such algorithms scales as
O(m2N), where m is the number of matrix-product evaluations.

4 Numerical experiments – Spatially varying deblurring

4.1 Description of the operators

To assess the performance of the algorithm, we propose to perform numerical experiments
on a large scale image deblurring problem. We synthesize two different blurring operators:

• The first one, in Figure 1a, is made of isotropic Gaussian impulse responses with a
variance σ(y1, y2) increasing along the vertical direction only (i.e. σ(y1, y2) = 3y2 for
(y1, y2) ∈ [0, 1]2). The impulse responses are then truncated out, so that 99% of the
Gaussian’s energy is kept. This allows to encode the operator as a sparse matrix to
accelerate the explicit computation of Θ. Notice that this is however unnecessary to
apply our algorithms. As an indication, the largest support has a size 19×19 pixels.

• The second operator, in Figure 1b models realistic degradations appearing in op-
tical systems [29]. The impulse responses are rotated and skewed Gaussian, with
parameters depending on their location with respect to the center of the field. As
an indication, the support of the impulse responses are of size 25× 25.

We compute the product-convolution expansions of each of these operators using a
randomized SVD of the matrix S as explained in Section 3.3.3. The order m of the ex-
pansion has been minimized so as to obtain a fixed deblurring performance, see paragraph
4.3.1. The first operator - Figure 1a - is decomposed with m = 5 coefficients, while the
second one - Figure 1b - with m = 25 coefficients.

4.2 Comparing decomposition timings

In this section, we compare Algorithm 1 to standard decomposition methods. The direct
algorithm to compute Θ from a product-convolution expansion is given in Algorithm 2.
It consists in using a matrix-vector product and a wavelet transform for each column. Its
complexity is therefore in O(N3) operations (this complexity is reduced here to O(N2)
since we use the fact that the impulse responses are compactly supported).

Algorithm 2 Naive decomposition of matrices in an orthogonal wavelet basis

for all λ ∈ Λ do
Get ψλ and compute wλ = Hψλ
Compute Ψ∗wλ to obtain (〈Hψλ, ψµ〉)µ∈Λ. Set it as the λ-th column of Θ

end for

7

(a) Operator 1 (applied to a 1024× 1024 image).

(b) Operator 2 (applied to a 1024× 1024 image)

Figure 1: An illustration of the spatially varying blurs used in the numerical
experiments. Blurring operators are applied to a Dirac comb to obtain the
impulse responses at various locations.

8

In this comparison, we used parallel implementations running on 12 cores on a work-
station with 256GB of RAM in double precision. Figure 2 compares the computing times
using 3 Algorithms:

• Algorithm 2 with a direct computation with a sparse matrix (Alg. 2 – exact).

• Algorithm 2 with a product-convolution expansion (Alg. 2 – PC).

• The proposed Algorithm 1 (Alg. 1).

We use square images containing N = 2n × 2n pixels with n ∈ {7, . . . , 12}. The
maximal image size is therefore 4096 × 4096. We run the algorithms with a Symmlet
wavelet basis of order 6. This choice is explained in Remark 4.1. The precision η = 5.10−4

has been chosen so as to obtain good performance for a deblurring experiment. This choice
is further detailed in Section 4.3.1.

In this setting, Algorithm 1 is much faster than any instance of Algorithm 2. For
n = 12, corresponding to images of 16 millions pixels, the speed-up from Alg. 2 – product-
convolution to Alg. 1 is 4680 for the operator on Figure 1a and 2330 for the operator on
Figure 1b.

We also evaluate the decomposition times for various precisions with N = 256 × 256
being fixed, see Figure 3. Assuming that the clock time is proportional to the number of
operations, we deduce that the number of operations is bounded by a quantity proportional
to η−d/α. We fit the curves with a line to obtain an approximation of the smoothness α
of each operator.

16k 65k 260k 1M 4M 16M

101

103

105

107

109

3y308d

3h36m

3s

76s

1y340d

Number of pixels N

Alg. 2 – exact

Alg. 2 – PC

Alg. 1

O(N2)

O(N log22 N)

16k 65k 260k 1M 4M 16M

101

103

105

107

109 19y311d

15h36m

15s

177s

2y339d

Number of pixels N

Figure 2: Running times for various number of pixels N = 2n × 2n with
n ∈ {7, . . . , 12}. Left: for the blurring operator on Figure 1a and Right: for the
one on Figure 1b.

Remark 4.1. The choice of the wavelet basis is of crucial importance as it has to simultane-
ously provide a good representation for the image and for the operator. A key parameter
is the number of vanishing moments of the wavelet basis. As suggested by Definition 3.1,
the number of vanishing moments should be at least equal to the smoothness α of the
convolution kernels uk in order to get the best possible approximation.

9

10−10 10−8 10−6 10−4 10−2 100
101

102

103

104

105

Precision η

T
im

e
(s
)

Blur Fig. 2a

η−2/(3.15)

Blur Fig. 2b

η−2/(2.38)

Figure 3: Decomposition times for various precisions and N = 256× 256.

In [11] we performed extensive numerical experiments of the approximation properties
of a wavelet basis w.r.t. the number of vanishing moments. As expected, taking as
many moments as possible was preferable for the approximation rate. However, increasing
it too much led to insignificant approximation quality while deteriorating the numerical
complexity significantly. This is mostly due to the constants of Theorem 5.1 which increase
with the number of vanishing moments.

We performed additional numerical simulations - not reported here - to assess the
behavior of the complexity of Algorithm 1 w.r.t. the sidelength δ of the wavelet basis.
This sidelength is related to the number of vanishing moments M since δ ≥ M [23,
Theorem 5.7, p. 286]. Numerically, we observed that the algorithm actually performs
better than the rate δd+1 in Theorem 3.1.

4.3 A deblurring experiment

The setting We assume that an observed image f0 ∈ E reads

f0 = Hf + b,

where f ∈ E is the clean image to recover, b ∼ N (0, σ2IdN) is a white Gaussian noise of
standard deviation σ and H ∈ RN×N is the blurring operator. The image f used in this
experiment is shown in Figure 4a and Figure 4 contains the degraded version f0 with the
two operators considered.

The optimization problem In this experiment we will seek to recover the image f by
solving the following variational problem

arg min
f∈E

E(f) =
1

2
‖Hf − f0‖22 + ‖Ψ∗f‖1,w , (4.1)

where ‖z‖1,w is a weighted `1-norm with weights w ∈ RN and defined by

‖z‖1,w =
∑
λ∈Λ

w[λ] |z[λ]| .

10

(a) Original image f – 1024× 1024 pixels

(b) Blurred with blur Figure 1a – SNR = 25.30 dB

(c) Blurred with blur Figure 1b – SNR = 22.72 dB

Figure 4: Images f0, degraded versions of f for the two operators considered.
Noise level σ = 5.10−3

11

The solution of this variational problem does not correspond to the state-of-the-art in
terms of image quality since the prior is simple, but it is known to perform well in short
computation times. Figure 5 shows the solutions of (4.1) for the two blurs, with Ψ being
a Symmlet wavelet basis of order 6, since it offers a good compromise between computing
times and visual quality of the results [13]. We use this basis in all the experiments.

(a) Restored image – SNR = 27.66 dB

(b) Restored image – SNR = 29.71 dB

Figure 5: Solutions of (4.1) for the two operators considered. The exact oper-
ator is used with w[λ] = 2 · 10−2 · |λ|.

The proposed algorithms Many algorithms were designed to solve non-smooth convex
problems of the form (4.1). The two predominant algorithms are the (accelerated) proximal
gradient descent [26] also known as FISTA [2] and the alternating descent method of
multipliers (ADMM) [18].

As shown in [13], a very efficient version of FISTA can be derived by approximating
(4.1) in the wavelet domain i.e.

arg min
z∈RN

1

2
‖ΘLz − z0‖22 + ‖z‖1,w , (4.2)

where z0 = Ψ∗f0, and ΘL is an L-sparse approximation of Θ = Ψ∗HΨ. This idea allows
to avoid constantly swapping between the wavelet and spatial domains, where most of
the time is spent in traditional solvers. In addition, the matrix Θ∗LΘL - which appears

12

in the gradient of the quadratic term - is mostly concentrated around its diagonal that
decreases across sub-bands. An efficient diagonal preconditioner can be designed exploiting
this property and further reduce the number of iterations by a factor roughly equal to 2
without compromising image quality.

The ADMM on its side requires the inversion of symmetric positive definite linear
systems with matrix Θ∗LΘL + τ IN . This step could also be accelerated using the same
ideas, but we observed that it was less efficient in practice and will not further report
about this.

Table 1 compares the performance of various algorithms detailed in more details in
Appendix A.

Algorithm Description Complexity

MVP FFT FWT Diag

FISTA-Spa FISTA with the exact operator 2 - 2 -

FISTA-PC FISTA using a PC expansion - 2m 2 2m

FISTA-W FISTA with sparse ΘL 2 - - -

FISTA-WP FISTA with ΘL and Jacobi precon-
ditioner

2 - - 1

ADMM-PC See Appendix A.2 - 3m 3 6m+2

Table 1: List of algorithms compared in the numerical experiments with their
complexity per iteration in terms of matrix vector products (MVP), fast Fourier
transforms (FFT), wavelet transforms (WT) and product with diagonal matrices
(Diag).

4.3.1 Choice of m and η

The approximation properties of product-convolution expansions are investigated in [12] in
terms of Frobenius distance on the operators. We are dealing here with an inverse problem
thus the approximation needs are different. Because of the regularization term in (4.1),
fine approximations of the operator are unnecessary, allowing to reduce the computational
burden, see Figure 6.

We choose the order of expansion m in a such a way that the pSNR of the deblurred
images does not differ from more than 0.01dB from the pSNR of the solution of (4.1). From
Figure 6, we obtain m = 5 for the operator on Figure 1a and m = 25 for the operator on
Figure 1b. Note that m is larger for the second blur since the impulse response variations
are more complex.

In a similar fashion, we select the precision η in such a way that the pSNR of the
solution of (4.2) does not differ from more that 0.04dB from the pSNR of the solution of
(4.1). We do not report the plots, but we found that η = 5.10−4 was sufficient to ensure
this requirement.

4.3.2 Computing times

In this paragraph, we precisely compare the different methods designed to solve (4.1). The
methodology consists in:

13

2 4 6 8 10

15

20

25

30

m

pSNR PC
pSNR exact

5 10 15 20 25 30
25

26

27

28

29

30

m

pSNR PC
pSNR exact

Figure 6: pSNR of the solution of (4.1) obtained with the product-convolution
expansion of order m (blue) and the exact operator (red). Left: for the operator
on Figure 1a. Right: for the operator on Figure 1b.

• finding the number L for which the solution of (4.2) has a decrease of pSNR of less
than 0.2dB w.r.t. the pSNR of the solution of (4.1),

• for each algorithm, finding a number of iteration Nit leading to a precision.

E(f (Nit))− E(f (0)) ≤ 10−3E(f (0)). (4.3)

The cost functions are reported in Figure 7, while the timings are reported in Tables
2 and 3. Deblurring were performed on Matlab with automatic multi-threading disabled
(using the -singleCompThreah option), to avoid uncontrolled behaviors while timing. To
further demonstrate the efficiency of FISTA-WP, we implement it in CUDA and run it on
a GeForce GTX Titan X in double precision.

FISTA-Spa FISTA-PC ADMM-PC FISTA-W FISTA-WP FISTA-WP (GPU)

iterations 84 80 32 84 38 38

Time (s) 58.3 44.4 37.6 3.6 1.9 0.087

Speed-up - 1.3 1.5 16.2 30.7 670

Table 2: Timings and iterations number to reach criterion (4.3) for the blur in
Figure 1a for the algorithms in Table 1 and in Figure4a (N = 1024× 1024).

This example confirms that solving problem (4.1) by an approximation in the wavelet
domain (4.2) leads to dramatic reduction of computation times (×16 and ×62 speed-
up factors) with little loss in the quality (less than 0.2dB). Furthermore, the use of the
structure of ΘL allows to derive efficient diagonal preconditioners which lead to an extra
×2 speed-up.

14

0 100 200 300 400
10−6

10−5

10−4

10−3

10−2

10−1

100

iterations

FISTA-Spa

FISTA-W

FISTA-WP

FISTA-PC

ADMM-PC

0 100 200 300 400 500
10−6

10−5

10−4

10−3

10−2

10−1

100

CPU time (s)

FISTA-Spa

FISTA-W

FISTA-WP

FISTA-PC

ADMM-PC

0 100 200 300 400
10−6

10−5

10−4

10−3

10−2

10−1

100

iterations

FISTA-Spa

FISTA-W

FISTA-WP

FISTA-PC

ADMM-PC

0 500 1,000 1,500 2,000
10−6

10−5

10−4

10−3

10−2

10−1

100

CPU time (s)

FISTA-Spa

FISTA-W

FISTA-WP

FISTA-PC

ADMM-PC

Figure 7: Performance of the deblurring methods in Table 1 for an image of
size 1024 × 1024. The cost functions are displayed with respect to the number
of iterations on the left column and the time on the right column. The first row
corresponds to the blur on Figure 1a and the second one to the blur on Figure
1b.

FISTA-Spa FISTA-PC ADMM-PC FISTA-W FISTA-WP FISTA-WP (GPU)

iterations 58 54 34 54 28 28

Time (s) 616 119.1 172.6 9.9 5.1 0.164

Speed-up - 5.2 3.6 62 120 4089

Table 3: Timings and iterations number to reach criterion 4.3 for the blur in
Figure 1b for the algorithms in Table 1 and in Figure4a (N = 1024× 1024).

15

5 Proof of the main result

The proof exploits the peculiar structure of product-convolution expansions:

• the convolution operator Uk = uk ? · can be decomposed in the wavelet basis and
yields a matrix Ak = Ψ∗UkΨ in O(N log2

2N) operations. As long as Uk belongs to
the smoothness class described in Definition 3.1, the matrix Ak can be thresholded
to obtain a sparse approximation Ãk of Ak.

• the multipliers Vk = vk � · are diagonal. Therefore the sparsity pattern of Bk =
Ψ∗VkΨ is included in the set of wavelet with supports intersecting the diagonal and
contain at most O(N log2N) non-zero coefficients, with known locations. They can
be computed in O(N log2N) operations using a cascade algorithm.

The general approach is therefore to compute each couple (Ak, Bk), compute the products
ÃkBk and accumulate the sum to get an approximation Θ̃ =

∑m
k=1 ÃkBk of Θ. The last

two steps are also critical since in the general case, the number of coefficients can explode
in the product ÃkBk or when summing them all. However, relying again on the peculiar
structure of the matrices Ãk and Bk, one can prove that the complexity of the algorithm
stays quasi-linear. In what follows we precisely describe each of these steps.

5.1 Structure of Ak

The matrix Ak = ΨUkΨ
∗ is the wavelet representations of a convolution operator Uk. As

such, it inherits a peculiar structure. As observed in [13] it has circulant sub-bands. To
make it precise, we recall that a wavelet representation Θ can be decomposed into its
wavelet sub-bands:

Θ =
(

Θe,e′

j,j′

)e,e′∈{0,1}d
j,j′≤J−1

, with Θe,e′

j,j′ [l, l
′] = Θ[λ, µ].

for l ∈ Tj , l′ ∈ Tj′ and λ = (j, e, l), µ = (j′, e′, l′). For instance on 1D signals with J = 2,
the sub-bands of Θ are shown in Figure 8.

Figure 8: Sub-band structure of convolution matrices in the wavelet domain.
Here on 1D signals with J = 2.

The sub-bands Θe,e′

j,k themselves have a specific structure captured by the following
definition.

Definition 5.1 (Rectangular circulant matrices). Let P ∈ R2jd×2kd denote a rectangular
matrix and τa be the translation operator by vector a ∈ Ω. The matrix P is called circulant
if and only if

• When k ≥ j : there exists p ∈ R2kd such that P [l, :] = τ2k−j lp for all l ∈ Tj .

16

• When k < j : there exists p ∈ R2jd such that P [:, l] = τ2j−klp for all l ∈ Tk.

Lemma 5.1 ([13, Theorem 3]). The sub-bands of matrix Ak are circulant. Therefore, only
O
(
(2d − 1)N log2N

)
coefficients are needed to encode Ak. They can be computed with no

more than O
(
(2d − 1)N log2

2N
)

operations.

Furthermore, the matrices Ak are assumed to belong to the smoothness class Aα gov-
erning the decay of its coefficients. This properties allows to obtain efficient approximations
of Ak as described by Theorem 5.1.

Theorem 5.1 ([7, Theorem 4.6.2]). Let A ∈ Aα. For all L ≥ 0, one can construct a
matrix AL with at most L non-zero entries of A per row and column such that

‖A−AL‖2→2 . L−α/d. (5.1)

As a summary, Lemma 5.1 together with Theorem 5.1 ensure that the computation of
the matrices Ak and their approximations at any precision are tractable in large dimen-
sions.

Remark 5.1. Note that the approximation step is crucial to obtain a quasi-linear com-
plexity of the overall algorithm. If no approximation were made, the complexity of the
product AkBk could become quasi-quadratic.

Remark 5.2. The proof of Theorem 5.1 gives an explicit way of building AL from A. We
recall it here for sake of completeness. The matrix AL is obtained by zeroing all entries
satisfying either (i) ||λ| − |µ|| > J(L) or (ii) ϑ(λ, µ) > 2J(L) where J(L) is linked to L
through the relation L . J(L)2dJ(L). A straightforward algorithm building AL consists in
looping along all rows λ and rows µ and discard elements satisfying either (i) or (ii). This
algorithm requires O(N2) operations in the general case. Due to the particular structure of
matrix A - only log2(N) coefficient are non-zero per row (Lemma 5.1) - this algorithm has
O(N log2N) complexity. In practice, many authors propose to simply threshold A. This
comes from the observation that keeping coefficients that are larger than 2−(d/2+α)J do
not satisfy (i) and (ii) (from Definition 3.1). Again, since A is encoded with O(N log2N)
coefficients, thresholding A costs O(N log2N) instead of O(N2) in the general case.

5.2 Structure of Bk

We now turn on discussing the structures of the matrices Bk = ΨVkΨ
∗. Since the operators

Vk are diagonal, the coefficients Bk[λ, µ] = 〈vk � ψλ, ψµ〉 necessarily vanish as long as
suppψλ and suppψµ do not intersect. Define

I = {(λ, µ) ∈ Λ× Λ | suppψλ ∩ suppψµ 6= ∅} ,

we thus have suppBk ⊆ I for all 1 ≤ k ≤ m. This property allows to derive upper bounds
for the number of coefficients in a column and a row of Bk (Lemma 5.2) as well as for the
cardinality of suppBk (Lemma 5.3).

Lemma 5.2. Assume that the mother wavelet is compactly supported on a hypercube of
sidelength 2δ. Let λ ∈ Λ and j = |λ|, there are at most (2δ)d

(
(2d − 1)j + 2d(J−j)) indexes

µ ∈ Λ such that suppψλ ∩ suppψµ 6= ∅.

Proof. Let λ = (j, e, l) ∈ Λ. From the definition of ψλ we get that

suppψλ ⊆
[
−(2J−j − 1)(δ − 1) + 2J−jl, (2J−j − 1)δ + 2J−jl

]
.

17

Consider now another µ = (j′, e′, l′) ∈ Λ. Necessary conditions for the intersections of the
supports of ψλ and ψµ are

−(2J−j
′ − 1)(δ − 1) + 2J−j

′
l′ ≤ (2J−j − 1)δ + 2J−jl

−(2J−j − 1)(δ − 1) + 2J−jl ≤ (2J−j
′ − 1)δ + 2J−j

′
l′,

where the ≤ has to be understood as a component-wise inequality for d > 1. Without loss
of generality, we assume that l = 0.

We let Nj,j′ be the set of l′ ∈ Λ satisfying the above conditions i.e.l
′ ≥ −2j

′−J
(

2J−j + 2J−j
′ − 2

)
δ + 2j

′−J(2J−j − 1)

l′ ≤ 2j
′−J
(

2J−j + 2J−j
′ − 2

)
δ − 2j

′−J(2J−j
′ − 1)

The volume of Nj,j′ is therefore

#Nj,j′ =
(

2j
′−J
(

2J−j + 2J−j
′ − 2

)
(2δ − 1) + 1

)d
≤
(

2j
′
(

2−j + 2−j
′
)

(2δ − 1) + 1
)d

≤
(

2j
′
(

2−j + 2−j
′
)

2δ + 1− 2j
′−j − 1

)d
≤
(

2j
′
(

2−j + 2−j
′
)

2δ
)d

Therefore,

{µ ∈ Λ | suppψµ ∩ suppψλ 6= ∅}

≤
J−1∑
j′=0

∑
e∈{0,1}d\{0}

∑
l′∈Tj′

1Nj,j′ (l
′)

= (2d − 1)

J−1∑
j′=0

(
2j
′
(

2−j + 2−j
′
)

2δ
)d

≤ (2d − 1)(2δ)d

 j−1∑
j′=0

1 +

J−1∑
j′=j

2d(j′−j)

= (2d − 1)(2δ)d

(
j + 2−jd

2dJ − 2dj

2d − 1

)
≤ (2δ)d

(
(2d − 1)j + 2d(J−j)

)
which gives the upper-bound on the number of intersections.

Lemma 5.3. We have #I ≤ c(d)δdJ2dJ , where the constant c(d) = 2(2d−1)2d. Therefore
since J = 1

d log2(N), the total number of intersections is at most

c(d)

d
δdN log2(N).

18

Proof.

#I = # {(λ, µ) ∈ Λ× Λ | suppψµ ∩ suppψλ 6= ∅}

≤
J−1∑
j=0

(2d − 1)2jd2dδd
(

(2d − 1)j + 2d(J−j)
)

≤ (2d − 1)2dδd

(2d − 1)

J−1∑
j=0

j2jd +

J−1∑
j=0

2dJ

≤ (2d − 1)2dδd

(
(2d − 1)J

2dJ − 1

2d − 1
+ J2dJ

)
≤ 2(2d − 1)2dδdJ2dJ

The numerical computation of Bk = Ψ∗VkΨ is conceptually simple. It consists in two
steps:

Step 1 Compute the wavelet transform of each column of Vk i.e. build a matrix V̂k such
that V̂k[λ, i] = 〈Vk[·, i], ψλ〉 for all 1 ≤ i ≤ N and λ ∈ Λ. Each column of Vk is a
discrete Dirac mass, i.e. contains only one element. Therefore, its wavelet transform
can be computed with a minimal number of operations using a cascade algorithm
taking advantage of the signals sparsity. A cascade algorithm consists in applying
discrete convolutions with filters h and g and subsampling the outputs in a recursive
fashion. It is derived from the multiresolution structure of a wavelet transform. We
refer to [23, Section 7.3] for more details.

Step 2 Compute the wavelet transform of each row of V̂k i.e. Bk[λ, µ] = 〈V̂k[λ, ·], ψµ〉 for

all λ, µ ∈ Λ. Similarly, the λ-th row of V̂k is sparse: it contains at most (2J−j2δ)d

contiguous coefficients. The same sparse cascade algorithm can be used to compute
its wavelet transform.

We illustrate the sparsity structure of the matrices V̂k and Bk in Figure 9 for the case of
1D signals. Observe that each row of V̂k contains only a few contiguous nonzero indexes.

(a) Sparsity structure of V̂k (b) Sparsity structure of Bk

Figure 9: Wavelet representations of a diagonal matrix. Here we illustrate the
case of a 1D wavelet transform of size 1024 × 1024 with J = 3 decomposition
levels.

To control the complexity of each step, we will use the following result.

19

Lemma 5.4. Let f ∈ E be supported on the hypercube of Ω defined by the lower vertex q0 ∈
Ω and the side length κ. We call q1 ∈ Ω the upper vertex of the hypercube i.e. q1 = q0 +κ.
Let c = Ψ∗f be its wavelet transform and cj,e its (j, e)-sub-band i.e. cj,e[l] = c[λ] = 〈f, ψλ〉
for all l ∈ Tj and λ = (j, e, l). We have

supp cj,e =
[
2j−Jq0 − (1− 2−J), 2j−Jq1 + (1− 2−J)2(δ − 1)

]
supp cj,e ≤ 2d

(
2d(j−J)κd + (2δ)d

)
Furthermore, the number of operations to compute c is bounded above by

2dδ2d
(
κd + (2d − 1)(2δ)dJ

)
.

Proof. Let λ = (j, e, l) ∈ Λ. From the definition of ψλ we get that

suppψλ ⊆
[
−(2J−j − 1)(δ − 1) + 2J−jl, (2J−j − 1)δ + 2J−jl

]
.

Necessary conditions for the intersections of the supports of ψλ and f are{
q0 ≤ (2J−j − 1)δ + 2J−jl

q1 ≥ −(2J−j − 1)(δ − 1) + 2J−jl.

where the inequalities have to be understood component-wise. These conditions are equiv-
alent to

2j−J
(
q0 − (2J−j − 1)

)
≤ l ≤ 2j−J

(
q1 + (1− 2J)2(δ − 1)

)
.

The volume of such a set is

supp cj,e =
(
2j−Jq1 − 2j−Jq0 + (1− 2−J)2(δ − 1) + (1− 2−J) + 1

)d
=
(
2j−J(q1 − q0 + 1) + (1− 2−J)2δ

)d
≤ 2d

(
2d(j−J)κd + (2δ)d

)
Since filters g and h have the same length, the details and average coefficients of the

wavelet transforms have the same size in each sub-band - albeit not the same support.
Therefore we only analyze the detail coefficients. The computation of one cj,e is obtained
from d convolutions of average coefficients at scale j + 1 with wavelet filters of size 2δ.
Hence the number of operations to compute one cj,e is d2δ# supp cj,e and the total number
of operations needed to compute c is

J−1∑
j=0

(2d − 1)2dδ# supp cj,e

≤ 2dδ(2d − 1)2d
J−1∑
j=0

(
2d(j−J)κd + (2δ)d

)
≤ 2dδ(2d − 1)2d

(
κd

1

2d − 1
+ (2δ)dJ

)
(5.2)

which ends the proof.

We are now ready to bound the complexity of step 1.

20

Lemma 5.5. The computation of the matrix V̂k requires at most

c(d)(2δ)d+1N log2N

operations. The constant c(d) = 2d(2d − 1).

Proof. The i-th column of V is supported on {ω−1(i)}. Using Lemma 5.4 together with
J = 1

d log2N give the result.

The cost of step 2 is controlled by the following Lemma.

Lemma 5.6. The computation of Bk from V̂k requires at most

c(d)(2δ)d+1N log2N

operations. The constant c(d) = 2d+1(2d − 1).

Proof. To bound the number of operations needed to compute B from V̂ , we need to know
the support of each row of V̂ . Let λ = (j, e, l). From Lemma 5.4, the necessary condition
for V̂ [λ, i] to be non zero is

l ∈
[
2j−Jω−1(i)− (1− 2−J), 2j−Jω−1(i) + (1− 2−J)2(δ − 1)

]
Equivalently the condition becomes

ω−1(i) ∈
[
2J−jl − (2J−j − 1)2(δ − 1), 2J−jl + (2J−j − 1)

]
.

Therefore supp V̂ [λ, ·] =
[
2J−jl − (2J−j − 1)2(δ − 1), 2J−jl + (2J−j − 1)

]
. Using again

Lemma 5.4 we conclude that the number of operations required to compute B from V̂
is bounded above by

J−1∑
j=0

(2d − 1)2jd2dδ2d
(

((2J−j − 1)(2δ − 1) + 1)d + (2d − 1)(2δ)dJ
)

≤ (2d − 1)2dδ2d
J−1∑
j=0

2jd
(

2d(J−j)(2δ)d + (2d − 1)(2δ)dJ
)

≤ (2d − 1)2dδ2d
(

(2δ)dJ2dJ + (2δ)dJ2dJ
)

≤ 22d(2d − 1)(2δ)d+1N log2N

where we used J = 1
d log2N to conclude the proof.

Overall, the computation of one matrix Bk can be achieved in O
(
δd+1N log2N

)
op-

erations. As seen in this two-step algorithm, the crucial ingredient of its efficiency is the
sparse cascade algorithm. Its implementation is very similar to the standard algorithm
but loops on the non-zero elements of the input signal in E . Furthermore, the indexes
of each non-zero coefficient at the next scale have to be tracked and reused at the next
filtering stage.

21

5.3 Products ÃkBk

Two questions are important while investigating the product ÃkBk. First, how many
operations are needed for its computation and how many non-zero coefficients are in the
product matrix. These questions are answered in the following Lemma.

Lemma 5.7. The number of operations required to compute ÃkBk is bounded above by

c(d)δdN log2Nε
−d/α
k . Furthermore, the number of non-zero coefficients is bounded above

by the same quantity. The constant c(d) = 2
d(2d − 1)2d.

The product ÃkBk could be implemented by building the matrix Ãk from the set of
circulant vectors and then rely on a standard implementation of sparse matrix-matrix
products. However, the building step could be memory-intensive and long time-wise. This
step is avoided by taking advantage of the sub-band circulant structure of Ãk: locations
of non-zero coefficients can be predicted from the elements of the circulant vectors.

Before proving Lemma 5.7, we present a useful Lemma.

Lemma 5.8 ([19, 30]). Let A and B two N × N matrices. Let αi be the number of
non-zero entries in the i-th column of A and βi be the number of non-zeros entries in the
i-th row of B. Then, the number of operations required to perform AB is only

∑N
i=1 αiβi.

Furthermore, the number of non-zero coefficients in AB is bounded above by the same
quantity.

We are now ready to prove Lemma 5.7.

Proof of Lemma 5.7. From Theorem 5.1 we know that the number of non-zero coefficients
in the λ-th column of A is bounded by

αλ = L.

Similarly, Lemma 5.2 shows that the number of coefficients in the λ-th row of B is bounded
by

βλ = 2dδd
(

(2d − 1)j + 2d(J−j)
)
.

Therefore the total number of operations is bounded above by:

∑
λ∈Λ

αλβλ ≤
J−1∑
j=0

(2d − 1)2jdL2dδd
(

(2d − 1)j + 2d(J−j)
)

= (2d − 1)2dδdL

(2d − 1)
J−1∑
j=0

j2jd +
J−1∑
j=0

2dJ

≤ 2(2d − 1)2dδdLJ2dJ

≤ 2

d
(2d − 1)2dδdLN log2N.

Furthermore, L is of the order ε
−d/α
k to reach an accuracy εk on the approximation of Ak.

Therefore the total number of operations is bounded above by c(d)δdN log2Nε
−d/α
k .

5.4 Accumulation of ÃkBk

The last step of the algorithm consists in summing all the products Ck = ÃkBk into Θ̃.
The following results show that the number of coefficients in Θ̃ does not explode while
adding the Ck and that the returned Θ̃k reaches the prescribed accuracy.

22

Lemma 5.9. There exists S ⊂ Λ2 s.t. supp ÃkBk ⊂ S for all 1 ≤ k ≤ m. Moreover,
#S = O

(
c(d)δdN log2N(mink εk)

−d/α).
Proof. Let k0 be the index such that εk0 = mink εk. Since Ak0 belongs to the smoothness
class Aα, there exists a F ⊂ Λ2 s.t. supp Ãk0 ⊆ F . Furthermore all Ak belong to the same
Aα we have that supp Ãk ⊆ supp Ãk0 .

On the other hand, since all Vk are diagonal matrices suppBk ⊆ I for all k.
Define I (resp. F) a N ×N matrix with ones on I (resp. F) and zeros outside. Let

S = suppFI. Then obviously supp ÃkBk ⊆ S. Moreover, from Lemma 5.7, the number

of non-zero coefficients in FI is bounded above by c(d)δdN log2Nε
−d/α
k0

which concludes
the proof.

5.5 Gathering everything

We will now gather all the ingredients to prove Theorem 3.1. The first part of the proof
certifies the accuracy of the approximation.

Lemma 5.10. The matrix Θ̃ returned by Algorithm 1 satisfies ‖Θ− Θ̃‖2→2 ≤ η

Proof. Using triangular inequality and since ‖ · ‖2→2 is multiplicative we get

‖Θ− Θ̃‖2→2 ≤
m∑
k=1

‖AkBk − ÃkBk‖2→2

≤
m∑
k=1

‖Bk‖2→2‖Ak − Ãk‖2→2 ≤
m∑
k=1

‖Vk‖2→2εk

=

m∑
k=1

‖vk‖∞εk = η.

We used the fact that ‖Bk‖2→2 = ‖Vk‖2→2 = ‖vk‖∞ since Ψ is an orthogonal wavelet
basis and Vk is a diagonal matrix. The last equality is derived from the definition of
εk = η

m‖vk‖∞ .

The second part deals with the overall complexity.

Proof of Theorem 3.1. The overall complexity of computing Θ̃ is bounded above by a
quantity proportional to

c(d)

 m∑
k=1

N log2
2N︸ ︷︷ ︸

Lemma 5.1

+N log2N + δd+1N log2
2N︸ ︷︷ ︸

Lemma 5.6

+2 δdN log2Nε
−d/α
k︸ ︷︷ ︸

Lemma 5.7

≤ c(d)

(
3δd+1mN log2

2N + 2N log2N

m∑
k=1

(
η

m‖vk‖∞

)−d/α)

≤ c(d)

(
δd+1mN log2

2N +N log2Nη
−d/αmd/α

(
m∑
k=1

‖vk‖d/α∞

))

The constant c(d) depends only on d. The term
(∑m

k=1 ‖vk‖
d/α
∞
)

depends on the considered

operator H. Finally, Θ̃ is computed in O
(
δd+1mmax(1,d/α)N log2

2Nη
−d/α).

The bound on the number of coefficients in Θ̃ is obtained using Lemma 5.9. Since
there exists a support S such that all suppCk ⊆ S we get that supp Θ̃ ⊆ S.

23

Remark 5.3. The complexity analysis does not take into account that vk may have some
smoothness properties. In this case, the associated Bk might belong to a class Aα′ and
could therefore be thresholded to further speed up the algorithm.

References

[1] N. Alger, V. Rao, A. Myers, T. Bui-Thanh, and O. Ghattas. Scalable matrix-free
adaptive product-convolution approximation for locally translation-invariant opera-
tors. SIAM Journal on Scientific Computing, 41(4):A2296–A2328, 2019.

[2] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

[3] G. Beylkin, R. Coifman, and V. Rokhlin. Fast wavelet transforms and numerical
algorithms I. Commun. on Pure Appl. Math., 44(2):141–183, 1991.

[4] J. Bigot, P. Escande, and P. Weiss. Estimation of linear operators from scattered
impulse responses. Applied and Computational Harmonic Analysis, 47(3):730 – 758,
2019.

[5] R. Busby and H. Smith. Product-convolution operators and mixed-norm spaces.
Transactions of the American Mathematical Society, 263(2):309–341, 1981.

[6] E. Candes and L. Demanet. Curvelets and fourier integral operators. Comptes Rendus
Mathematique, 336(5):395–398, 2003.

[7] A. Cohen. Numerical Analysis of Wavelet Methods, volume 32. Elsevier, 2003.

[8] A. Cohen, I. Daubechies, and P. Vial. Wavelets on the interval and fast wavelet
transforms. Applied and Computational Harmonic Analysis, 1(1):54–81, 1993.

[9] I. Daubechies. Ten Lectures on Wavelets. SIAM, June 1992.

[10] L. Denis, E. Thiébaut, F. Soulez, J.-M. Becker, and R. Mourya. Fast approximations
of shift-variant blur. International Journal of Computer Vision, 115(3):253–278, 2015.

[11] P. Escande and P. Weiss. Sparse wavelet representations of spatially varying blurring
operators. SIAM Journal on Imaging Sciences, 8(4):2976–3014, 2015.

[12] P. Escande and P. Weiss. Approximation of integral operators using product-
convolution expansions. Journal of Mathematical Imaging and Vision, 58(3):333–348,
2017.

[13] P. Escande and P. Weiss. Accelerating `1-`2 deblurring using wavelet expansions of
operators. Journal of Computational and Applied Mathematics, 343:373–396, 2018.

[14] Y. Fan, C. O. Bohorquez, and L. Ying. Bcr-net: A neural network based on the
nonstandard wavelet form. Journal of Computational Physics, 384:1–15, 2019.

[15] R. C. Flicker and F. J. Rigaut. Anisoplanatic deconvolution of adaptive optics images.
Journal of the Optical Society of America A, 22(3):504–513, 2005.

[16] M. Gentile, F. Courbin, and G. Meylan. Interpolating point spread function
anisotropy. Astronomy & Astrophysics, 549:A1, 2013.

24

[17] E. Gilad and J. Von Hardenberg. A fast algorithm for convolution integrals with
space and time variant kernels. Journal of Computational Physics, 216(1):326–336,
2006.

[18] R. Glowinski. Lectures on Numerical Methods for Non-linear Variational Problems.
Springer Science & Business Media, 2008.

[19] F. G. Gustavson. Two fast algorithms for sparse matrices: Multiplication and per-
muted transposition. ACM Transactions on Mathematical Software, 4(3):250–269,
1978.

[20] W. Hackbusch. Multi-grid methods and applications, volume 4. Springer Science &
Business Media, 2013.

[21] W. W. Hager. Updating the inverse of a matrix. SIAM Review, 31(2):221–239, 1989.

[22] N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions. SIAM
Review, 53(2):217–288, 2011.

[23] S. Mallat. A Wavelet Tour of Signal Processing – The Sparse Way. Third Edition.
Academic Press, 2008.

[24] Y. Meyer and R. Coifman. Wavelets, Calderón-Zygmund and Multilinear Operators.
1997.

[25] J. G. Nagy and D. P. O’Leary. Restoring images degraded by spatially variant blur.
SIAM Journal on Scientific Computing, 19(4):1063–1082, 1998.

[26] Y. Nesterov. Gradient methods for minimizing composite functions. Mathematical
Programming, 140(1):125–161, 2013.

[27] D. O’Connor and L. Vandenberghe. Total variation image deblurring with space-
varying kernel. Computational Optimization and Applications, 67(3):521–541, 2017.

[28] K. Schneider and O. V. Vasilyev. Wavelet methods in computational fluid dynamics.
Annual Review of Fluid Mechanics, 42:473–503, 2010.

[29] J. D. Simpkins and R. L. Stevenson. Parameterized modeling of spatially varying
optical blur. Journal of Electronic Imaging, 23(1):013005, 2014.

[30] R. Yuster and U. Zwick. Fast sparse matrix multiplication. ACM Transactions On
Algorithms, 1(1):2–13, 2005.

A Deblurring algorithms

We briefly describe the deblurring algorithms used in the numerical experiments.

A.1 FISTA

Let Ψ : RN → RN denote an orthogonal wavelet transform and H : RN → RN denote a
linear operator. We then have

arg min
f∈RN

1

2
‖Hf − f0‖22 + ‖Ψ∗f‖1,w = Ψ

(
arg min
z∈RN

1

2
‖HΨz − f0‖22 + ‖z‖1,w

)
. (A.1)

25

The Forward-Backward algorithm applied to the right hand-side of (A.1) starts with an
initial guess z(0) = y(1) ∈ RN and iterates for i ≥ 1 as

z(i) = Prox‖·‖1,w

(
y(i) − τΨ∗H∗(HΨy(i) − f0)

)
y(i+1) = z(i) +

i− 1

i+ 2

(
z(i) − z(i−1)

)
with a step-size τ ≤ ‖H‖−2

2→2. This algorithm can be applied verbatim with the exact
spatial operator (coined as FISTA-Spa). In the same fashion, we design another algorithm,
named FISTA-PC, using the product-convolution expansion.

One can also use FISTA to solve (4.2), the approximation of (4.1) in the wavelet
domain. It starts by setting z(0) = y(1) ∈ RN and iterates for i ≥ 1 as

z(i) = ProxΣ
‖·‖1,w

(
y(i) − τΣΘ∗L(ΘLy

(i) − z0)
)

y(i+1) = z(i) +
i− 1

i+ 2

(
z(i) − z(i−1)

)
where Σ is a diagonal preconditioner equal to the identity or to the Jacobi preconditioner
diag(Θ∗LΘL). Note that in this alternative, one iteration costs only 2 matrix-vector prod-
ucts with the sparse matrix ΘL. We will refer to this algorithm as FISTA-W when Σ = IN
and FISTA-WP when Σ = diag(Θ∗LΘL) (see [13] for more details).

A.2 ADMM for product-convolution

The resolution of (4.1) using an ADMM or a Douglas-Rachford is expensive due to the
resolution of non trivial linear systems at each iteration. We can adapt ideas proposed
in [27] and exploit the product-convolution structure to accelerate the resolution of the
linear systems and improve its efficiency. We describe this idea below.

A product-convolution operator H can be decomposed as:

Hf =
m∑
k=1

uk ? vk � f = UVf,

with V =
(
V1 . . . Vm

)T
∈ RmN×N and U =

(
U1 . . . Um

)
∈ RN×mN . This decomposition

allows to split the problem (A.1) as

min
f∈RN ,g∈RmN ,z∈RN

z=Ψ∗f,g=Vf

1

2
‖Ug − f0‖22 + ‖z‖1,w

The augmented Lagrangian associated to this problem reads

L(f, g, z, ξ, ζ) =
1

2
‖Ug−f0‖22+‖z‖1,w+〈ξ, g − Vf〉+〈ζ, z −Ψ∗f〉+β1

2
‖g−Vf‖22,γ+

β2

2
‖z−Ψ∗f‖22.

The norm ‖ · ‖2,γ is just a weighted l2-norm for the augmented term of g = Uf . Weighting
the influence of each Uk allows accelerating the convergence of the ADMM, i.e. it acts as
a preconditioner. This norm is defined by ‖ · ‖22,γ = 〈Dγ ·, ·〉RmN , with

Dγ =

γ1IdN 0 0

0
. . . 0

0 0 γmIdN

 ∈ RmN×mN

26

a block diagonal matrix where γk > 0 and
∑m

k=1 γk = 1. The choice γk = ‖Uk‖2→2 led to
good practical behaviors.

The ADMM amounts to iterating:

• g(i+1) = arg min
g∈RmN

L
(
f (i), g, z(i), ξ(i), ζ(i)

)
.

The solution of this sub-problem is given by

g(i+1) = (U∗U + β1Dγ)−1
(
U∗f0 − ξ(i) + β1DγVf (i)

)
.

The matrix U∗U contains m × m blocks of size N × N with the (k, l)-th block
populated with U∗kUl. The direct inversion of this matrix will be inefficient even in
the Fourier domain. However, using the Woodbury matrix identity [21], the solution
can be expressed as

g(i+1) =
(
D−1
γ −D−1

γ U∗(IdN + UD−1
γ U∗)−1UD−1

γ

) (
U∗f0 − ξ(i) + β1DγVx(i)

)
.

Matrix (IdN + UD−1
γ U∗) = IdN +

∑m
k=1 γkUkU

∗
k ∈ RN×N is diagonal in the Fourier

domain and can be efficiently inverted. In this step, the computation of 3m FFTs
and 4m+ 1 products with diagonal matrices are involved.

• z(i+1) = arg min
z∈RN

L
(
f (i), g(i+1), z, ξ(i), ζ(i)

)
= Prox 1

β2
‖·‖1,w

(
Ψ∗f (i) − 1

β2
ζ(i)
)

.

This step costs one wavelet tranform plus a thresholding operation.

• f (i+1) = arg min
f∈RN

L
(
f, g(i+1), z(i+1), ξ(i), ζ(i)

)
.

The solution of this sub-problem reads

f (i+1) = (β1V∗DγV + β2IdN)−1
(
V∗(ξ(i) + β1Dγg

(i+1)) + Ψ(β2z
(i+1) + ζ(i))

)
.

Matrix β1V∗DγV + β2IdN = β1
∑m

i=1 γiViVi + β2IdN is N ×N diagonal matrix and
can be efficiently inverted.

In this step, one wavelet transform and m + 1 products with diagonal matrices are
involved.

• Update Lagrange multipliers

ξ(i+1) = ξ(i) + β1Dγ(g(i+1) − Vf (i+1))

ζ(i+1) = ζ(i) + β2(z(i+1) −Ψ∗f (i+1)).

This step requires m products with diagonal matrices and one wavelet transform.

To summarize, one iteration of the ADMM costs 3m FFTs, 3 wavelet transforms and
6m+ 2 products with diagonal matrices. This is substantially more than one interation of
FISTA with the product-convolution expansion i.e. 2m FFTs, 2 wavelet transforms and
m products with diagonal matrices.

Acknowledgments

P. Weiss is supported by the ANR JCJC Optimization on Measures Spaces ANR-17-
CE23-0013-01 and the ANR-3IA Artificial and Natural Intelligence Toulouse Institute.
Both authors thank the GDR ISIS its support.

27

	Introduction
	Preliminaries
	One dimensional orthogonal wavelet bases
	Orthogonal wavelet bases on the space of signals

	Main results
	Assumptions
	The algorithm and its guarantees
	Getting a product-convolution expansion
	Naive interpolation of impulse responses
	Interpolating expansions of impulse responses
	Singular value decomposition

	Numerical experiments – Spatially varying deblurring
	Description of the operators
	Comparing decomposition timings
	A deblurring experiment
	Choice of m and precision
	Computing times

	Proof of the main result
	Structure of A
	Structure of B
	Products AB
	Accumulation of AB
	Gathering everything

	Deblurring algorithms
	FISTA
	ADMM for product-convolution

