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Abstract

The main objective of this work is to estimate a low dimensional sub-
space of operators in order to improve the identifiability of blind inverse
problems. We propose a scalable method to find a subspace H of low-rank
tensors that simultaneously approximates a set of integral operators. The
method can be seen as a generalization of tensor decomposition models,
which was never used in this context. In addition, we propose to con-
struct a convex subset of 7 in order to further reduce the search space.
We provide theoretical guarantees on the estimators and a few numerical
results.

1 Introduction

In many measurement devices, a signal vy living in some Hilbert space B5,, of
dimension n is probed indirectly using an operator Hy : B,, — B,,, where B,,
is a Hilbert space of dimension mﬂ This yields a measurement vector ug € B,
defined by
uo = f(Hovo),

where f is some perturbation of the measurements (e.g. additive noise, modulus
for phase retrieval, quantization,...). Solving an inverse problem consists in
recovering an approximation ¢ of the signal vy using the measurements uy.

n all this paper, we assume that the operators are defined in finite dimensional spaces. An
extension to infinite dimensional Hilbert spaces is feasible but requires additional discretization
procedures. We decided to skip this aspect to clarify the exposition.



When the operator Hy is known, many efficient solutions are now available.
Unfortunately, in many cases, only a crude estimate of Hj is available or it is
even completely unknown. This is the field of bilinear or blind inverse problems.
In that case, finding a reasonable approximation is far more involved. Significant
theoretical progresses have been achieved in the last fews years though, [I5] [1]
20, 211, 19, 22].

One of the key ideas behind these methods is the principle of lifting. To
apply it, it is common to assume that the operator Hy and the signal vy live in
known low dimensional vector spaces of operators H = span(F}, ..., Pg) and
signals Q@ = span(qi,...,qr|). Then, we can write that Hy = Pag and that
vy = QP for some oy € RISl and some Gy € RIT!. Under those assumptions, the
blind inverse problem is simplified to finding a pair of vectors («, 3) € RISIxRIT
and the measurement associated to the pair can be written as

Uy = (PO[)(Qﬁ) = Z athws,h

ses,teT

with wsy = Psqr, S = {1,...,|S|} and T = {1,...,|T|}. This last expression
only depends on the outer product af”, allowing to lift the problem to the
matrix space RISXITI A typical way to attack the blind inverse problem is
then to solve the following optimization problem:

1
min WM — )2, 1
MERISIXITI rank(M)=1 2” yllz (1)

where W : M — ZSES,tET Mg yws . Various relaxations and algorithms can
then be used to solve the lifted problem and come with strong theoretical
guarantees. We refer the interested reader to the above mentioned papers.

A critical issue to apply these techniques is the knowledge of the subspaces
H and Q. In this paper, we will focus on the estimation of the subspace H from
a sampling set of operators (H;),., in C C H.

The interest is that determining a low dimensional set of operators with
a small volume can significantly ease the problem of operator identification
in blind inverse problems. While our primary motivation lies in the field of
inverse problems, this problem can also be understood as a generic problem of
approximation theory.

1.1 Application examples

Space varying blur An example that will be used in our numerical experi-
ments is the case of space varying blurs in wide field microscopy. In this imaging
modality, the blur varies spatially due to multiple effects such as scattering or
defocus for instance. The possible family of blurs may vary depending on factors
such as the focal screw, the temperature (which changes the refractive index of
the immersion oil), small tilts with respect to the focal plane and many other
parameters that are hard to model from a mathematical point of view. It is



possible to collect a family of operators (H;);cr, by observing fluorescent micro-
beads in a slide under various conditions and by using operator interpolation
techniques such as [3].

Magnetic Resonance Imaging (MRI) In MRI, the traditional observation
model simply states that the Fourier transform values of the image are observed.
The reality is far more complex and complete image formation models comprise
many unknowns such as inhomogeneities of the main magnetic field or spatial
sensitivities [I4]. To apply the proposed methodology to this device, the idea
would be to first run many calibration scans to recover a list of operators (H})ecr,
and then build a reduced model from this set.

Diffusion equations In many applications such as electrical impedance to-
mography [7], the operators H; are given implicitly as solutions of partial differ-
ential equations (PDEs). For instance diffusion equations, which are widespread
in applications, are of the form div(¢Vu) = v, where ¢ is a space varying
diffusion coeflicient that may change depending on external parameters. The
application that maps v to u can be written as a linear integral operator H;.

1.2 Contributions

The simplest approach to find a low dimensional vector space of operators H is
to apply a principal component analysis (PCA) on the set of vectorized operators
(H))ier. This approach is optimal in the sense of the Hilbert-Schmidt norm,
but infeasible in practice. For instance, space varying blurring operators acting
on small 2D images of size 1000 x 1000 can be encoded as matrices H; of size
105 x 10, which can hardly be stored since each of them contains 9 Tera octets
of data.

In this work, we therefore work under the assumption that the operators can
be well approximated by low-rank tensors up to an invertible transformation.
This hypothesis is reasonable for many applications of interest. For instance,
it includes product-convolution expansions [I3] and hierarchical matrices [16]
as special cases. We then provide an estimator H of the subspace of operators
H with an upper-bound of its rate of approximation. In addition, we propose
to construct an estimator C of C, as the convex hull (in a matrix space) of the
operators (H;);er, projected onto H. To make further use of this convex hull, we
propose a fast projection algorithm on C. We finally provide various numerical
examples to highlight the strengths of the approach and its scalability.

1.3 Related works

To the best of our knowledge, the overall objective of this work is new, even
though most of the individual tools that we combine together are well estab-
lished. A related idea can be found in the literature of PDEs, where reduced
order bases [23] [27] or their variants [§] allow to solve families of PDEs efficiently.



However, the objective there is to approximate the solutions of a PDE (usually
linear) and not the associated operator. This is a significant difference, since
approximating the operator (and its adjoint) allows to use the rich collection
of nonlinear regularizers commonly used in the field of inverse problems to find
regularized solutions.

2 Notation

In all the paper, I, J, K and L are the sets of integers ranging from 1 to |I|, | J|,
|K| and |L|. We assume that u € By, is defined over a set X of cardinality m.
We let u(z) denote the value of u at € X. Similarly, we assume that Hu € B,
is defined over a set Y. The set of linear operators from B, to B,, is denoted Z.
An operator H € = can either refer to an operator or its matrix representation
in an arbitrary orthogonal basis. The entries in the matrix representation will be
denoted H (z,y). The Frobenius norm of H is defined by ||H||r := \/tr(H*H).
It is invariant by orthogonal transforms. The scalar products over all spaces
will be denoted by (-, -).

The tensor product between two vectors a € B,, and b € B,, is defined by
(a®b)(x,y) = a(x)b(y). The notation ® stands for the element-wise (Hadamard)
product and if X has a group structure and ai,as € B,,, a1 * as denotes the
convolution product between a; and as.

Let E = (e;)ier denote a family of elements in B,,. The same notation will
also apply to the matrix £ = [ey,..., ||| and to the subspace E = span(e;,i €
I). Let W = (wg)rex denote a family of vectors with an SVD of the form
W =UXVT with U = [uy,...,u,], then

SVD‘H(wk,k S K) = [ul, ce 7“\[\],

i.e. the |I| left singular vectors associated to the largest singular values.

We let Ay_q = {z € RV, vazl x; = 1} denote the simplex of dimension
N. We let K4 denote the set of compact and convex sets of R? with non empty
interior. The Hausdorff distance between C; and Cs is defined by D(Cy, Cs) =
inf{e >0 : Cy C C3 +€B(0,1),Cy C Cy +€B(0,1)}, where B(0,1) is the unit
Euclidean ball.

3 Operator representations

A critical requirement in this work is that the operators H; can be approximated
by (local) low-rank tensors, up to a linear transform. This need comes from the
fact that arbitrary operators have no chance of being i) computed efficiently
in large scale applications and ii) approximated efficiently by low dimensional
subspaces. We describe a few possible decompositions below.



3.1 Low-rank approximations

The simplest assumption is to state that every operator H; is well approximated
by a low-rank tensor of the form H; =}, _ ;- ax,; ® Br1, with | K| < min(m, n).
Unfortunately, many observation operators met in practice are concentrated
along their diagonal, making this assumption unrealistic.

3.2 Product-convolution expansions

Product-convolution expansions are a family of decompositions that were ana-
lyzed recently in [I3]. They can be defined whenever X =Y and X possesses a
group structure. It amounts to assuming that

H(u) = Z ag* (Brg ©u). (2)

keK

This decomposition can be computed efficiently using fast Fourier transforms.

To understand its link with the low-rank assumption, it is handy to introduce
the space varying impulse response (SVIR) of H; defined by S;(z,y) = Hi(x +
y,y). One can show that the SVIR of an operator S; of the form can be
written as S; = ZkeK 0,1 ® P, Hence, assuming that H; can be approximated
by a product-convolution expansion is equivalent to saying that its SVIR is
nearly low-rank.

This assumption covers many practical applications. For instance, a suffi-
cient condition for an operator H; to be well approximated using this decompo-
sition is that all the impulse responses (Si(-,y))yey of the operators H; can be
simultaneously encoded in the basis span(ay i, k € K).

3.3 Hierarchical matrices

Hierarchical matrix approximations [2], are another popular method to approx-
imate linear operators. It amounts to assuming that H; = ), _x ax1 ® By,
where |K| is not necessarily small compared to m and n, but where most of
the elements oy, ; and 5 ; have a small support, allowing for fast matrix-vector
products. It can be shown that many practical applications are well suited to
those approximations. It is particularly popular in the fields of PDEs and some
inverse problems. In addition, related approximations such as fast multiple
methods or wavelet expansions also fit this formalism.

3.4 A general setting
Overall, the most generic assumption on H; can be formulated as follows.

Assumption 1. There exists a left invertible linear mapping R : = — = such
that each sample H; € = satisfies:

S =R(H) = Z g1 @ B,

keK



where for alll € L, the sets (ag)r € A and (Bk1)x € B, where A and B are
|K| | K| ;
subspaces of By, ' and By, ' respectively.

Introducing the operator R allows to encompass the usual low-rank assump-
tion by taking R = Id, but also the product-convolution expansions: going from
the SVIR to the matrix representation can be expressed through an operator
R : 2 — E that shifts each column of H;. The spaces A and B allow to incorpo-
rate support constraints, which are used for many decompositions such as the
hierarchical matrices.

The final objective of this work is to estimate a subspace ‘H and a set C. In
fact, we will rather estimate Hgx = RH and Cr = RC, which is equivalent since
R is assumed to be left-invertible. In order to lighten the notation, we will skip
the multiplication by R in the rest of the paper.

4 Subspace estimation

In this section we provide an efficient and robust method to estimate the vector
space of operators H. We look for an estimator H of H with a tensor product
structure:

E®F = span(e; ® fj, (ei)ier € &5 (f5)jes € Fa);
where the sets &7 and JF; can be thought of as:
e The set of orthogonal families of cardinality |I| and |J| defined by

g|]| = {ei S Bm,’é S I, H62H2 = ]., <€i,61‘/> = 51',1"} (3)
and

Floy =1t € Bn,j € L fjlla = 1,{fj, fir) = 854} (4)

e The set of orthogonal families of cardinality |I| and |J| with support con-
straints.

e Additional knowledge on the operators, such as non-negativity, can possi-
bly be added.

We impose a tensor product structure so that every operator living in H can
be evaluated rapidly. The sets & ;| and F|; do not necessarily coincide with
the sets A and B, since it could be interesting to change the structure of the
operators that are given as input to the algorithm.

The principle of our approach is to find a structured low-dimensional basis of
operators that allows to approximate simultaneously all the sampled represen-
tations (S;)ier. This principle can be expressed through a variational problem,
as follows: L

(E,F)=  argmin ¢(E,F), (5)
(ei)ier €& 1
(fi)ies€F |1



with i
¢(E,F) = 3 > Meer(S) = SilF
leL

where IlggF is the projection onto the tensor product space E ® F'.

4.1 The algorithm

Problem is bi-convex: it is non-convex in the pair (£, F') € &7 x F s}, but it
is convex when minimizing in F € &) for F' € F|; fixed and when minimizing
in F' € F  for E € & fixed. This motivates the use of the alternating
minimization procedure presented in Algorithm [I}

Algorithm 1 Alternating Least Squares (ALS)

Approximatively solve: Problem
INPUT: (S))icr, subspace constraints &7 and F|z|, initial guess (Ep, Fp).
1: procedure

2: Initialization: ¢t = 0.
3: while stopping criterion not satisfied do
4: E; 1 = argmin ¢(E, Fy).
Eeé&y
5: Fii1 = argmin ¢(Epqq, F).
FeF
6: t=t+1
7 end while
8 Return Hy = E; ® F;.
9: end procedure

This algorithm is tightly related to common methods found in the field of
tensor decompositions. In the particular case where &7 and F|; are sets of
orthogonal families of cardinality |I| and |.J|, Problem (5 coincides exactly with
the Tucker2 model. This decomposition was first introduced by Tucker in [2§].
It was then reinvented independently and given several names such as tensor
PCA, 2DSVD, GLRAM, common component analysis, or tensor decompositions
[28, 12 B0} [29]. We refer to the review papers [I8, [I0] for more insight on
tensor decompositions. Computing this decomposition is a complex nonconvex
problem, but the most standard approach to solve it takes the algorithmic form
provided in Algorithm[I] It does not converge to the global minimizer in general
and only provides approximate solutions. However, it is observed that it usually
yields estimates close to the global minimizer in practice with a properly chosen
initialization.

4.1.1 Orthogonal constraints

In this section, we detail the algorithm, when the spaces £;| and F|; denote
the set of orthogonal families of cardinality || and |J| respectively.



Initialization The initialization of Algorithm [I}is of major importance since
Problem is non convex. We suggest using the High Order Singular Value
Decomposition (HOSVD) [I1] in order to initialize the algorithm. This can be
seen as a generalization of the SVD for tensors. As discussed in [I§], this popular
method provides a good starting point for an alternating algorithm.

From a variational point of view, the principle of the HOSVD consists in
solving the following problems:

o1

Ey = argmin 5 SIS =D Te(aw) @ Beallw (6)
11 leL keK
o1

Fy = argmin SIS =D ans @ Te(Bea) |7 (7)
I~ 1erL keK

i.e. to find the subspace E (resp. F') that captures most of the energy.

We will show below that we can leverage the specific low-rank structure of
the operators S to evaluate the HOSVD rapidly. We let A; = [a1, ..., k]
and By = [B1,...,Bk),]- We also diagonalize AT A € RIKIXIKT and BI'B, €
RIKIXIK| gq

AT A = U4\ O and B B = ¥, 5V

with ; = diag(o7 ... 70\2K\,l) and A; = diag(A7 ;. .., )‘|2K|7l)'

Lemma 1 (Higher Order Singular Value Decompositon (HOSVD)). Let A =
AI\IIBZ = [&171, e 764|K|,l] and Bl = Bl\IIAL = [51’1, ey 6‘]{‘,[], We have

Ey = SVD\[\(U}CJO]]CJ, ke K,l S L)

and ~
Fo = SVD)5/(Ak, 1Bk, k € K, € L)

Proof. We concentrate on Fy only, since the proof for Fy is similar. The first
argument is to notice that Problem @ is equivalent to

1
By =argmax > > | Y Mg(ox) ® BeillF

Eegy 215 fek

since we are looking for the subspace that captures most of the energy. Expand-
ing the squared Frobenius norm leads to:

1
Ey = argmax = > (Hg(ak, 1) @ Br, 1, e (k1) @ Br.t)
Eeg g el

k€K
k€K

1
= argmax > Y (Mg (o, 1), Te(%k, 1)) Bk, 1) Brst)
E€£|1| leL

kieK
koe K

1
= argmax — > (Ig(A) Tg(A), Bl B)).
Beg 2 i



Recalling that 4; = A, ¥; = [51’17 ... ,B|K|J], this leads to:

1
FEy = argmax — Z(\IIELHE(AZ)THE(Al)\I’B” i)

E€&in 2 er
1 -
= argmax 3 Z Z GIQg,ZHHE(O‘k,l)”g
B€& 2 el kek
1 -
= argmax 5 Z Z ||HE(Uk,lOék,l)||g
Be€&1 % el kek

= SVD|[|(O’]€’lO~zk’l7k eK,le L)
O

Lemma [I] shows that the computational cost of this initialization is domi-
nated by the computation of two singular value decompositions: the first matrix
is of size m x |L|| K| and the second is of size n x |L||K|. Depending on the cardi-
nality |L|| K|, this can be achieved either with standard linear algebra routines,
or with randomized SVDs [I7]. In the applications that we consider here, n and
m would typically be very large, while the number of samples |L| and the rank
of the tensors | K| are expected to be small. In that situation, the computation
can be performed even for very large scale applications.

Apart from being computable, the HOSVD presents additional advantages:
the cost function can be controlled by the tail of the square singular values
and running the alternating least squares on top of this initialization procedure
ensures that the cost function will not increase above this upper-bound [I1]. In
addition, the ranks |I| and |J| of the decomposition can be chosen automatically
according to the decay of the singular values in the HOSVD.

The partial optimization problems The ALS algorithm requires to solve
the two following partial optimization problem

argmin  ¢(E, Fy), (8)
(ei)ic1 €& 1)
and
argmin  ¢(Eyq1, F), (9)

(fi)je €F 1)
where E; = [es1,..., e n] and Fy = [fi1,..., ft,|s)] are the output of Algorithm
[ at iteration ¢ > 0. Solving the two subproblems require the computation of
two SVDs as in the previous section.
Lemma 2 (Partial optimization problem and (9)). Let A = A(B'F) =
[dl,la ceey du"l] and Bl = Bl<AlTEt+1) = [61,[; ey B\I\,l]- For all t > 0 we have

Ei1 =SVDy(&j0,5 € J, 1€ L)

and ~
Ft+1 = SVD‘J‘(ﬁiJ,i el,le L)



Proof. We concentrate on E;,1 only, since the proof for F}; is similar.
The projection IIggr, (S;) of the operator S; onto the subspace E ® F; can
be expressed as follows

Meer (S) =Y Ma(ak) @ Mk, ()

kek

=3 > akne)ei ® Y (Bris frfe;
keK iel jer

Y <z<ﬁk,l7ft,j>ak,l,ei> Y
iel jeJ \keK

= ZHE(dj,l) @ ft,5-
jed

Replacing this expression into , leads to solve the problem @ again, with the
difference that the second factors (f; ;) form an orthogonal family. This allows
to avoid the diagonalization step of Lemma

1 -
Eyyq = argmax o DI Te(d;n) ® fille

I
E€&in “ier jes
1 ~ 2
= argmax - Z Z e (a0 %
E€&in 2L jes

= SVD‘Il(ONéj,l,j e J,lel).

4.1.2 Hierarchical matrices

The results presented in the previous paragraph can readily be applied to the
case of hierarchical decompositions. To this end, let (7,)pcp denote a block-
partition of X x Y [I6]:

e cach 7, has a product structure: 7, = X, x Y, for some X, C X and
Y, CY.

° 7;,1ﬂ7;2:®1fp1 #pQ
[ ] XXYzUpeP%.

We assume that the subspaces A and B defining the operators S; (see
Assumption encode support constraints. For each | € L, the k-th tensor
o1 ® Bi, should satisfy:

Jp € P,supp (ar,; @ Br) € Ty,

for some py € P. In order to apply the proposed ideas, we can first define two
vectors of ranks (gp)pep and (r,)pep and generate an estimate H of A of the

10



form

with dim(E,) = g, and dim(F},) = rp.

The estimation of the subspaces Ep and ﬁp can then be achieved with the
same methodology as the one described for orthogonal matrices. In this setting,
we can use HOSVD algorithm for each sub-blocks, this implies computing |P|
SVDs with lower dimensional matrices (depending of the size of support).

4.1.3 Non-negative decompositions

A common choice of family is the set of non-negative vectors, that is
€ ={e €RY, Jlell2 = 1}
and

Fia ={f eRL, | fll2 =1},

where R’} denotes the set of nonnegative vectors of R™. Problems of the form
(5) can then be solved with approaches such as [5 24, []. We do not explore
this possibility further in this paper.

4.2 Theoretical guarantees

We are now ready to establish the theoretical guarantees of the estimator (E, ﬁ)
under additional assumptions on the sampling model.

Assumption 2 (Sampling model). The operators S; are i.i.d. copies of a ran-

. er. 2
dom operator S with || S||p < r almost surely. Let ®(E,F) = 1E (HHE®F(S) - SHF>.
We assume that:

inf ®(E,F) =rk(I,J). 10
wee ez (B, F)=r"k(I,J) (10)

The scaling in 72 in equation is natural: if the random operator S is
scaled by a constant factor, so will the approximation error. The bound
provides the best achievable estimate of subspace.

4.2.1 Adversarial errors

We let (EL,ﬁ 7,) denote the solution of . In practice, we do not directly
observe the operator S, but only an approximate version S/ of it. Hence we
need to estimate the approximation error.

Assumption 3 (Approximation error). The operators Si* satisfy the following
inequality : ||SE — Si||r < k(K)||Si||F with k(K) < 1.

11



Theorem 1. Assume that Assumptions[q and[3 hold, then:
P (@(EL,J?L) < 672 max (k(K), w(I, J))) > 1-2exp (=8|L| max (k(K), k(I, J))) .

We first discuss the consequences of this Theorem [I] prior to detailing its
proof. In case the relative approximation error x(K) is too large w.r.t. to
k(I,J) there will be no guarantee to reach ®(E*, F*) since the best achievable
error will be of the order r?x(K). This bound can be achieved with probability

1 — 4 by choosing |L| = %. However, when the approximation gets finer

ie. K(K) < k(I,.J), the estimator (Ey, F1,) becomes as good as possible up to

a constant. This bound can be achieved w.h.p. 1 —§ by choosing |L| = 1805((?/%).
Proof. We let
e, 1
oL(B,F) Y o3 (IMser(S) - Sil)
e
and 1
of. 2
K(E,F)= BV Z (HHE@)F(SIK) - SlKHF) :
Ll
Step 1. We first control the bias term as follows
|®%(E,F) — ®L(E,F)| < 3r?k(K)/2. (11)

Let G = E® F and G denote its orthogonal complementary with respect to
the Frobenius inner-product over the space of operators. We let D; = Sf — 5
and notice that || Di[|p < k(K)||S||r by Assumption[3] Now, we can decompose

Spas S = SC + 99" and SK as SK =S¢+ S¢ + DE + DE". This leads to
€1
e (S) = Sillz = 1S5 1%

and N N
M (S5) = SKIF = 157 +DF |17

So that
M6 (S/%) = SEIE = Ma(S) = Sill%|
€L s €L
= 2457, DF*) + IDF |13
< 2r%k(K) + r’r(K)? < 3r?k(K).
By summing this inequality over [ € L, we get the inequality .
Step 2. As in the previous step, we let G = F ® F. We show here that

8| L|t?
P(|®f, — @ > ) < 2exp (—|r4|> (12)

12



Let us introduce the random variable Z; = |g(S) — Si|% = [|SE 2.

We have E(Z;) = ® and by Assumption [2, we have Z; € [0,72]. Let X =
Yen(Zi —E(Z;)). We have X/(2|L|) = &1 — ® and Hoeffding’s inequality [4]
Thm 2.8| ensures that for all ¢ > 0 the random variable X satisfies

P(X| > 1) < 2 267
exp| ———— ).
== 2EP T
Step 3. We are now ready to conclude the proof. We have
|BF — & < | — Dp[+ [P — D).

The problem has at least one solution denoted (E*, F*). Indeed, the finite
dimensional vector spaces E and F can be parameterized by || and |J| unit
vectors. The tensor product of |I||J| unit balls is a compact set and the function
® is continuous, ensuring the existence of a minimizer. We get:
®(Ep, 1) < @ (Bp, Fr) + |®F — @] +|®p — |
< OL(E* F*) +3/2r°k(K) + |®f, — O
< O(E*, F*) + 3r’k(K) + 2|®1 — @|.

Using the inequality 7 we get for all t > 0:

P (@(EL, Fr) <2 (1, J) + 36(K)) + 2t> >1-2exp <—8f4|t2> .

The first part of the theorem is obtained by selecting ¢ = 72 max(k(K), (I, J)).
O

4.2.2 Random errors

The bound in Theorem [I] may look a bit disappointing since it is impossible
to reach the absolute best error 72x(1,.J). This is due to the fact that the
approximation errors D; = SlK — 5; can be adversarial and create a bias in the
estimation. If we add randomness assumptions on these errors, the situation
can improve. We illustrate it below with random isotropic errors.

Theorem 2. Suppose that assumptions[q and[3 hold. Assume furthermore that
the errors Dy have an isotropic distribution with E(||D;]|%) = R? and | D;||% <
k2(K)r? almost surely then:

P (@(EL,ﬁL) < ’1"2(:“6(]7 J) +e)> >1—8exp <_(6’f(2[|(L)i1)2) ’

Theorem [2f shows that under isotropic random approximation errors, the
estimator (Ep, F) can become arbitrarily good. This bound can be achieved

with probability 1 — § by choosing |L| = % log (%).

13



Proof. We let,
&, (E, F)= E Mg r
( ) 2‘ [| o (| ® (Sl) Sl” )

and
@K[(E F) et 71 E (HHE@F(SK) - SK||2> - —Rz (mn — |I||J|)R2
’ 2|L| = ! Lol mn

The difference compared to the previous proof is that we can now bound
|®@¥K — & | by a quantity that vanishes with the number of observations L. For
any pair of subspaces (E, F'), we have:

L|t?
P(|®F(E,F)—®L(E,F)|>1t) <2 _HE
(| L( ’ ) L( ) )|_ )_ exp( 187"4I€(K)2>
To prove this statement, let G = E ® F. We get:

1 1 1 n R?
oK (B, F)—d EF:‘— 2S5 DS DS 12 = 2 (mn—|1]]J)).
O (B, F)=®L(E, F) M;(m DE) 4 1DF I} ) = (mn—|1]1.])

Letting 28 = 2(SE", DG + ||DE ||2,, we get E(ZE ) = (mn — |I]|.J|) R
since D is isotropic. Indeed, E (2(5GL DGL)> = 0 since E(D;) = 0, and by

letting IT;1 denote the projection onto G+ we get:

E(IDf|2)
=E (tr (D] I, g1 D))
=E (tr (HGiDlDlTHg )) = tr (Mg E(D,DHTIEL)

R2 R2

Noticing that \ZlGL | <7r?(2k(K)+k(K)?) < 3r?k(K), we can use Hoeffding’s

inequality:
>t <2e 21L}#”
xp | ————— ] -
=t = e Irdk(K)?

We are now ready to conclude the proof. Similarly to the previous proof, we
get:

2|L| > 2 Bz

leL

O(EL, Fr) < K (E* F*)+|0K (B, F)—®L(EL, Fp)|+|®L(Ep, Fr)—®(EL, Fr)|.

Using a union bound argument we have:

~ o 2|L|t? 8|L|t"
K /
IP(@(EL,FL)gch (E*7F*)+t+t) > 1-2exp <_9r4/€( )2>—2€xp <_7’4 .
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Using another union bound argument, we get:

—~ —~ 21L 2 Lt/2
P <<I>(EL,FL) < O(E* F*) + 2t + 2t’) > 1—dexp (-"t) _dexp <—8| |

Irtk(K)?

By taking t = 6x(K)t’ we get

R R L 12
P (tI)(EL,FL) < B(E*, F*) + ' (126(K) + 2)) >1—Sexp (—8| Jf ) .
T

Letting € > 0 and setting t' = we get:

7'26
12r(K)+2°

~ =~ 2|L|e?
< * 2) > 1 = JER— i
P(@(EL,FL)_QD(E,F)+6T)_1 8exp( (6 )+1)2>

Finally, given § > 0, we can select |L| = M log (%) so that the following

holds true: A
P (<I>(EL7FL) < ®(E*, F*) + r%) >1-4.

This concludes the proof. O

5 Subset estimation and projection

5.1 Convex hull estimator

In this section, we assume that (S;);cr, are i.i.d. copies of the random operator
S. We assume that the distribution of S is uniform over a convex, compact and
non-empty set C. Letting Iy, denote the projector onto ’HL = EL ® FL, we
propose to construct an estimate C T of C, by taking the convex hull of the
projected and observed operators

CKI_I = conv(ITL(SK),l € L).
We can only expect éfn to approximate Il (C), and not C directly, since some

information is lost by the projection. The following proposition summarizes the
rate of convergence of C;

Proposition 1. Under the assumptions[q and[3, we get the following result

D(C™ L (C)) < rr(K) + Op ((hlé'ﬂ)“) 7

where D denotes the Hausdorff distance between sets and

e a=d if C is a polytope,

e o= % if C has C® boundary and positive curvature everywhere.

15
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Proof. Step 1. The difficult part of this inequality is the rightmost term,
which is due to [6]. With our notation, his main result states that D(Cy,C) =

1
Op <<II|1£|L) a>, where Cy, = conv(S;,1 € L).
Step 2. In order to obtain our result, we first observe that since Iy is a

projection, it is also a contraction and D(IL(Cy), 1 (C)) < D(Cy,C).

Step 3. Now, let CAf = conv(Sf,1 € L). We have

D(Cp, CE) < ri(K) (13)

Indeed, the distance function déf (H) = ian'e@f |H — H'||2 is convex. Hence,
the problem sup s d@f (H) appearing in the definition of the Hausdorff dis-
tance consists of finding the maximum of a convex function over a convex set.
Hence the maximum is attained at an extremal point of CX i.e. at a point SX.
All those points satisfy ||SE — S| < rr(K), hence SUP e, déf (H) <rs(K).
A similar reasoning on the other part of the distance yields the inequality .
Since II, is a contraction, we also get P(I1.,(Cy), HL(GI{()) < re(K).

Step 4. To conclude, we use the fact that the Hausdorff distance satisfies the
triangle inequality. Hence:

DI, 1,(C)) < DIECE", 1,(C))
+D(HL(CAL)7HL(C))

< ri(K) + Op <<1“£|L|>i> .

Remark 1. There are different ways to control the distance between sets. An-
other possibility is to use the Nikodym metric, i.e. the relative difference of
volume between Cf’n and M1 (C). For this metric, it can be shown that the
convex hull estimator is a minimaz operator (i.e. that it is optimal uniformly
on the class of convex bodies) and we also obtain a convergence rate of the
form Op(|L|=2/%+1) for a convex set C with C® boundary and positive curvature
everywhere.

O

Remark 2. Proposition [1| only characterizes the asymptotic behavior of this
estimator. This result should be taken carefully since the constants in the Op
depend on the geometry of the convex set C. In particular, the sharper the
corners of C, the larger the constant.

5.2 A projection algorithm

In what follows, we let C = CAfH to simplify the notation. In the framework
of blind inverse problems (see equation (I])), the knowledge of the convex set C

16



may lead to the resolution of variational problems of the form

. 1
min L jHu -y (14
HeC,uew

A critical tool to solve is a projection operator Il5 onto the set C. For
instance, it would allow using a projected gradient descent. Let H € = and
S =R(H). The projection is defined as follows:

1
I15(S) = argmin - |MX — S|, (15)
)\GA‘L| 2

where M : X — 37, ML (SE).

Depending on the number of samples |L|, different algorithms can be used to
solve (15). For small | L], interior point methods [25] are an excellent candidate,
since they lead to high precision solutions in small computing times. For larger
|L|, they become intractable and it is then possible to use lighter, but less precise
first order solutions. We detail such an approach below.

First, we let 7 = 1/||M*M||p. This quantity can be computed using a power
method for instance. We can then use the accelerated proximal gradient descent
described in Algorithm [2}

Algorithm 2 Projection onto convex hull of operators
INPUT: II.,(Sf), S, initial guess \g € A
OUTPUT: Projection of S onto C.

: procedure
forNk =1,2,...,kenqg do
)\k = HA\L| (>\k: - TM*(M)\k - S))

1
2
3
4: Akt1 = A + % ()\k - >\k71)
5
6
7

end for
Return M A\
: end procedure

end

The projection on the (|L|—1)-dimensional simplex can be computed in linear
time and Algorithm [2| ensures that the cost function decays as O(1/k?). The
matrix M*M can be precomputed with a numerical complexity in O(|L|?(|1|*n+
|7|>m)). The product M*S can also be computed efficiently, for operators S
given in a tensor form. This is for instance the case if S € ﬁL.

6 Numerical experiments

In this section we illustrate the previous methods with a few numerical examples.
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(a) Kernel operator (b) SVIR operator 1. Kernel operator (d) SVIR operator 2.
1. 2.

Figure 1: Kernel and SVIR of two different inverse diffusion operators.

6.1 Approximation rate and computation times
6.1.1 The setting

We start with a one dimensional diffusion equation as introduced in Section
[ Our main aim here is to illustrate the computational complexity of the
approach.We take B,, = B,, = R™ with n = m. We define the operator V with
forward finite differences and homogeneous Neumann boundary conditions. The
divergence operator div = —V*, where V* is the adjoint of V.

We wish to find a family of estimators of the mapping f — u for the following
equation

div (¢Vu) = f,Vf € R",

and for diffusion coefficients ¢ € R™ living in a subset {2 of nonnegative vectors.
We assume that we can access |L| observations of ¢, denoted ¢; for | € L. We
let

H;: R"— R"
£ (div (e V)T f

denote the operators of interest, where + denotes the pseudo-inverse. In our
simulations we consider diffusion coefficients ¢; of the form:

=3+ Z wy 1(p) cos (2mpx) + wy 2(p) sin (2wpx) , Vo € R™,
peP

with w; 1, w2 taken uniformly at random in the |P| — 1-dimensional simplex
Ajpj—1. We assume that the operators H; are given in a product-convolution
form, or equivalently that their SVIR S; can be written as S; = ZkeK 0 1R B 1.
In our numerical experiments, we compute the factors ay,; and S ; using a SVD
of S;. This is feasible since we work in 1D. The number of factors in the SVD is
set to | K| = 20 which is enough to capture 97% percent of the energy in average.
Two instances of operators H; and their SVIR S are displayed in Figure [I]
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6.1.2 Description of the approaches

Given |I| and |.J|, our aim is to find two families (e;)icr € &7 and (f;);jes € Fl i,
with & and F|; defined as the sets of orthonormal families, see equations (3
and . We compare four approaches to estimate the subspace H.

e SVD: We concatenate the vectorized representation of H; in a matrix M.
The family (e;)ier is set to be the first |I| left-eigenvectors, and the family
(f;) e is set to be the first |J| right-eigenvectors of M. This approach is
optimal in terms of Frobenius norm but can only be applied because we
work in a low dimensional 1D setting.

e DCT: We set e; and f; as the first elements of the discrete cosine trans-
form, i.e. e;(x) = cos(m/(n — 1)iz) and f;(y) = cos(w/(m — 1)iy) with n
corresponding to the number of elements in the discretization. The family
(ei® fj)ier,je is in tensor product form and it is orthogonal, which allows
making very fast computations.

e HOSVD: implements the decomposition in equations @ and @

e ALS: use the Alternating Least Square Algorithm [T with 15 iterations and
the HOSVD as an initialization.

We first compare the four different methods in terms of their approximation
quality for |L| = 50 observations. We evaluate the average relative projection

error defined by E (%) It can be evaluated through a Monte-Carlo

simulation. Figure shows the relative error for the different methods and
various sizes |I| with |I| = |J|.

The approximation rate given by the SVD is upper-bounded by the approx-
imation properties of the considered family of operators. This is an illustration
of Theorem [I] which describes the behavior of the approximation rate in terms
of the constants (I, J) and x(K). In this example, we distinguish two regimes:
when |I]|J| < |L| the approximation rate is bounded by the constant (I, .J),
and when |I]|J| > |L|, the approximation rate is bounded by the constant x(K).

6.1.3 Computing times

We now examine the computational time for each method in Figure 2b]

The efficiency of the SVD has to be balanced by its important computational
time. It becomes completely impractical on a usual workstation when the di-
mensions are larger than 10°. We also observe that using the ALS algorithm
instead of the HOSVD leads to negligible gains, despite a significantly higher
computational burden. The runtime is basically proportional to the number of
iterations.

6.2 Blind deblurring

In this section we apply the proposed method of subspace estimation to solve a
blind deblurring problem. We use simulated operators and grayscale images.
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(a) Relative approximation error versus the dimension |I||.J| of each basis.

40 H{ —SVD
— DCT
HOSVD
20l """ Tucker 2 via ALS
0 2= 1l

1,024 2,048 4,096

(b) Computation time in seconds versus the dimension of the problem (the operators
are of size n X n).

Figure 2: Numerical behavior for 1D operators.

The setting We let B, = B,, = R™*™ with n = 64 and set A = R™*™ and
B = R" ™. We generate random space varying impulse responses of the form

| K]

Si=> @ B
k=1

In the following, we set |K| = 5, let 6, = Z* and set for all [ € L and all
(z1,22) € {1,...,n}?

(cos(Oy)wy — sin(By)w2)?  (sin(fk)z1 + cos(@k)x2)2)
8 2 '

This corresponds to anisotropic Gaussian functions rotated differently. We gen-
erate the maps Sy, as follows. For each | € L:

Oék,l(90175€2) = €xp ( -

1. We generate a matrix of R"*™ where each element is a uniform random
number in [0, 1], independent of the others.

2. We compute a discrete convolution of this random matrix with an isotropic
Gaussian blur. We then rescale it in [0, 1], producing a discrete random
field f; € [0, 1]™>™.
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Figure 3: Examples of factors. Top: the full collection of (ag)rer. Bottom:
the factors (8k,1)kek-

Figure 4: Learned family (e;)c;.

3. We then partition the domain 2 into | K| sets (wi,)rex defined as
weg = f ([(k = 1)/IK| k/|K])) -

4. Finally, the factors i ; are defined as the indicators of wy; convolved with
a Gaussian kernel.

We display the elements aj, and Sj,; in Figure

The output of our algorithm With those definitions, we get a list of random
product-convolution operators H; defined by

Hu= Z ag *x (Bey ©u),Vu € R™™,
kK

From the collection of (S;);er, we can use the initialization of Algorithm to
estimate a subspace 7:21, 7. In this paragraph we index the estimator by I and
J.

The families (e;);er and (f;);es produced by the initialization of Algorithm
are displayed in Figure [4] and [5] The family (e;);c; is an orthogonalization
of the family aj. The family (f;);ecs is quite similar to the first elements of a
Fourier basis. This is to be expected since the functions f5;; are smooth and
Fourier bases optimally encode smooth function spaces, see e.g. [26].
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A blind-deblurring experiment Using the notation of the introduction, we
set |S| = |I||J| and let Py = e;® f; for s = (i, j) denote the elementary operators

constituting the subspace H = span(Py,..., Pg). Welet Q € R™¥ITI denote
a matrix with columns (q;)er corresponding to elements of the discrete Haar
wavelet basis with |T| = 274. We let

Q={QB,8 R

Figure 5: Learned family (f;);jes.

denote the subspace containing the images of interest. We let 3y € RI7| denote
the coefficients of the true image in the subspace Q, and Hy € H the true
operator that we want to recover. Finally we let

ug = Hovg + 1,

where 7 is an additive white Gaussian noise. We display the true image vg in
Figure [6a] and the blurry-noisy image uo in Figure [6D]
We wish to solve the following bilinear inverse problem

in ||Hv — ugl|2. 16
min || Hv — o3 (16)

He#H

Using the lifting and convex relaxation techniques described in [I] leads to

. A
min _[|M|l. + 2 [W(M) — w3 (17)
MeRITIXIS| 2

where A > 0 is a regularization parameter. This convex program is solved using
an accelerated proximal gradient method.
We let the algorithm run until the cost function stops decreasing. In Figure
we compare the reconstructed images with three different estimations H of

H:

e When H = ‘H, we use the full subspace to solve , this yields the result
in Figure [6d It takes 390 seconds to solve the problem and we obtain a
SNR of -3.0dB. The reason for this failure is that the dimension of the
subspace is too large, making it impossible to identify the true image.
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a) Original. b) Blurry-noisy. (c) H =H - 390"
) H = Hs,30-120" ) H = Hs g-31"

Figure 6: Blind deblurring experiment with different estimated subspaces.
full dimensional search space. |I| = 5 and |J]| = 30. |[I|] = 5 and
|J] = 8. Reducing the search space makes the problem identifiable and reduces
the computing times.

e When H = '7':21,] with |I| =5 and |J| = 30, i.e we use subspace subspace
of dimension 150 to solve , we obtain the result in Figure The
computing times are divided about 3 times (120 seconds) than with the
full subspace H = H. More importantly, the method succeeds to recover
the sharp image and we obtain a SNR of 26.7dB.

e When 7 = ”;QLJ with |7] = 5 and |J| = 8, we subspace of dimension 40 to
solve , leading to the results in Figure This time, the computing

times decay to 31 seconds, which is 12 times faster than the case H = H.
We also obtain a good result with an SNR of 26.2dB.
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