
Learning and Exploiting Physics of Degradations

Paul Escande

Department of Applied Mathematics and Statistics

Johns Hopkins University

Baltimore, Maryland 21218

Email: paul.escande@gmail.com

Mauro Maggioni

Department of Mathematics

Department of Applied Mathematics and Statistics

Mathematical INstitute of Data Science (MINDS)

Institute of Data Intensive Engineering and Science (IDIES)

Johns Hopkins University

Baltimore, Maryland 21218

Email: mauro.maggioni@jhu.edu

Abstract—Even though physics of degradations of an ac-
quisition system might be complex, it often relies on a small
number of parameters. We consider the blind deconvolution
problem with a kernel k(θ) parametrized by θ ∈ Θ ⊂ R

m.
Assuming that m is small, this setting models the dependency
of physics of degradations on a small number of parameters.
Under some hypotheses on Θ and the map θ 7→ k(θ), the
set M = {k(θ) | θ ∈ Θ} describes a compact Riemannian
manifold. This works deals with learning the manifold M and its
exploitation in restoration methods.

I. INTRODUCTION

We consider the following blind deconvolution problem:

u0 = k(θ) ⋆ u+ η, (1)

where u0 ∈ RN is the observed image, u ∈ RN is the
underlying sharp image, η ∼ N (0, σ2IdN ) is an additive
noise and k(θ) ∈ RK is a convolution kernel parametrized by
θ ∈ Θ ⊂ Rm. We will denote k : Θ → RK the parametrization
of the kernels.

We assume Θ is embedded with the Euclidean distance and
a measure µ that is absolutely continuous w.r.t. the volume
measure. The set M = k(Θ) is embedded with the L2

metric and the push-forward measure ν = k♯µ. We assume
that (M, ρ, ν) is a compact C1+α Riemannian manifold of
dimension m isometrically embedded in RK . For example,
this happens when Θ is an open hyperectangle of Θ and k is
a C1+α bi-Lipschitz map.

The classical blind deconvolution problem

Find (k, u) s.t. u0 = k ⋆ u+ η, (2)

is extremely challenging to solve because of i) its ill-posedness,
ii) its non-convexity due to the joint estimation (k, u) and
iii) the number of degrees of freedom K can become large.
Probably dating from 1975 [1], this problem has drawn a
lot of attention in the image processing community in the
last decades [2], [3], [4]. Most of these works rely on the
minimization of a cost function of kind

1

2
‖k ⋆ u− u0‖2 + λR1(u) + µR2(k), (3)

via alternate minimizations. The optimization scheme is paired
with an extensive number of empirical rules to (i) deal with
the non-convexity of the problem and (ii) select a good
local minima since the global minimizer of the cost function
is oftentimes the trivial solution (δ, u0) [5]. Even without

reconstruction guarantees, these methods surprisingly provide
excellent results.

Recently, some works have followed another path [6],
[7], [8]. Based on the lifting trick, the bilinear problem
becomes linear at the cost of an increase of its dimension.
The problem boils down to recovering a rank one matrix. Even
though it is in general NP-hard, it has been shown that under
appropriate random measurement model, recovery guarantees
can be established with high probability. In [6], a convex
relaxation involving the minimization of the nuclear norm has
been proposed. While providing a straightforward convergence
of the algorithm to the global solution, this strategy becomes
intractable for large dimensions. To copt with this issue, [7]
proposed to solve the non-convex problem. By choosing a wise
initial guest, the algorithm is shown to converge to the solution
of the problem with high probability. From a practical point
of view, those methods require a rather precise estimation of
the support of the kernel to output good restoration results.

These existing works might not be tailored to the setting
(1), where the kernels are supposed to leave on a manifold
of small intrinsic dimension. They could be improved be im-
proved taking advantage of the additional manifold structure.
Furthermore, it is of great interest to design efficient methods
allowing to provide recovery guarantees while using state of
the art image processing algorithm.

Assuming that the domain Θ can be sampled and the
corresponding kernel can be estimated, we present a method
that i) learns the manifold and ii) use this knowledge in a
restoration procedure. After exposing notation, the method is
described and then numerically illustrated on simulated data.

II. NOTATION

Let E denote the vector space of images defined on
Ω = {1, . . . , n1} × . . . × {1, . . . , nd}. The total number of
pixels is therefore N = n1 × . . . × nd. The pixels of the
image are identified by a multi-index i = (i1, . . . , id) ∈ Ω.
For an image u ∈ E and scalar q ∈ [1,+∞), we let

‖u‖q =
(∑

i∈Ω |u[i]|q
)1/q

and ‖u‖∞ = maxi∈Ω |u[i]| denote
the standard ℓq and ℓ∞ norms, respectively. The dot product
of u and v ∈ E is defined by 〈u, v〉 =

∑
i∈Ω u[i]v[i]. Let

V = Ed denote the space of discrete vector field on Ω. For
any f = (f1, . . . , fd) ∈ V , |f | denotes an element of E with
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i-th entry defined by

|f |[i] =

√√√√
d∑

l=1

fl[i]2. (4)

The discrete gradient of u ∈ E is defined by:

∇u = (∂1u, . . . , ∂du) ∈ V. (5)

Partial derivatives are defined by:

(∂lu)[i] =

{
u[. . . , il + 1, . . .]− u[. . . , il, . . .] if il < nl

0 otherwise.
(6)

The adjoint operator ∂∗l of ∂l is the unique operator satisfying
〈∂lu, fl〉 = 〈u, ∂∗l fl〉 for all u, fl ∈ E. The adjoint of the gra-

dient operator by ∇∗ : V → E is defined by q 7→
∑d
l=1 ∂

∗
l ql.

Let f be a function from Rm → R, its gradient will be
denoted as ∇f . For vector-valued function g : Rm → Rn, ∇g
refers to its Jacobian. Furthermore, if a function h : Rm1 ×
Rm2 → Rn depends on two variables (x, y), ∇xg will denote
its gradient (or Jacobian) w.r.t. x.

III. DESCRIPTION OF THE METHOD

A. Overview

The main idea of this work is to take advantage of the
manifold (M, ρ, ν) in restoration methods. In practice this
manifold is never known and only samples from ν can be
drawn i.i.d.

The method is therefore decomposed in two steps:

1) Construct an estimation M̂ of the manifold M from

a set of (k̂i). This step is handled assuming that one
can design a device able to sample (θi)

p
i=1 ∈ Θ i.i.d

following µ. We also assume that one can construct

a procedure giving k̂i an estimation of k(θi).
2) Minimize a cost function defined on this manifold. In

this work we chose to solve the bi-level optimization
problem:




min
k∈M̂

J (F (k)) = J(k)

F (k) = arg min
u∈E

1

2
‖k ⋆ u− u0‖

2
2 + λR(u).

(7)

The choices of the functions J : RN → R+ and R :
RN → R+ are discussed in the following sections.

B. Manifold learning

Many manifold learning techniques have been proposed
e.g. [9], [10], [11]. We will use the Geometric Multi-Resolution
Analysis (GMRA) [12] since it provides a robust and com-
putationally efficient procedure to construct low-dimensional
geometric approximations of M at varying resolutions from a
i.i.d. sampling of ν.

The construction of GMRA involves the following steps:

1) Construct a multiscale partition {Cj,i}j∈Z,i∈Λj
of

(M, ρ, ν).

2) Perform local PCA on each Cj,i. Let cj,i be the mean
of Cj,i and Vj,i be the m-dim principal subspace.
Define Pj,i(x) = cj,i + ProjVj,i

(x− cj,i).
3) Get an approximation of M at scale j with

M={Pj,i(Cj,i)}i∈Λj
. Furthermore let Pj : RK →

RK denote the projection on Mj .

In practice, the measure ν is never known and only samples
(ki)

p
i=1 can be sample from it i.i.d. The GMRA can be run

with ν̂p = 1
p

∑p
i=1 δki outputting a M̂j = {P̂j,i(Cj,i)}i∈Λj

and the associated projection P̂j .

The following Theorem gives guarantees on the empirical

approximation of M by M̂j .

Theorem 3.1 ([13, Theorem 4]): Let M be a closed man-
ifold of class C1+α isometrically embedded in RK , with
α ∈ (0, 1] and ν be a doubling probability measure on M.
Let a > 0 be arbitrary and b > 0. Let j∗ be chosen such that

2−j
∗

∝





log p

p
, for m = 1

(
log p

p

) 1
2(1+α)+m−2

, for m ≥ 2.

(8)

then

E‖X − P̂j∗X‖2 .





(
log p

p

)2

, for m = 1

(
log p

p

) 2(1+α)
2(1+α)+m−2

, for m ≥ 2,

(9)

Theorem 3.1 also provides concentration bounds on ‖X −
P̂jX‖ that we do not expose for sake of space, see [13,
Theorem 4] for more details. This result shows that GMRA
has an estimation rate that depends exponentially only on
m, the intrinsic dimension of the manifold, and not K, the
ambient one. Furthermore, the numerical costs of computing

M̂j behaves like O(pK(log p+m2)) +Om,K(p log p) where
Om,K has a constant exponential in m and linear in K. These
two properties illustrate the efficiency of GMRA in the targeted
setting m≪ K.

C. Optimization on GMRA

The first idea of this work was to design a smooth cost
function J on the GMRA which will be minimized by a
gradient descent.

We will assume that R is chosen such that the arg min
in (7) is uniquely defined. If the maps J : E → R+ and
F : RK → E are C1 then so is J : RK → R+. Furthermore its
gradient reads ∇J(k) = (∇F (k))∗∇J (F (k)) where ∇F (k)
denotes the Jacobian of F .

A generic gradient descent algorithm on a generic manifold
M is as follows [14], [15]:

1) Compute extrinsic gradient ∇J(k(l)).
2) Projection: ∇M,k(l)J(k

(l)) = PM,k(l)(∇J(k
(l))),

where PM,k(l) is the projection on the tangent plane

to M at k(l).
3) Compute step-size α(l) along the descent direction.
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4) Retraction: k(l+1) =
RM,k(l)(−α

(n)∇M,k(l)J(k
(l))).

The GMRA structure allows some simplification of the al-
gorithm above. Since it builds a set of planes that approximate
the manifold, the tangent plane to Mj at k(l) is Vj,i associated

to k(l). Furthermore, the retraction operator is in this case the
projection on the GMRA Pj,i associated to k(l).

D. Choice of R

For a fixed kernel k, the problem of deblurring has been
extensively studied in the literature. The assumption that sharp
images have small total variation has lead to various deblurring
algorithms [16], [3].

However the total-variation is non-smooth and requires
the use of complex algorithms, i.e. with a more involved
differentiation step. For sake of investigation, we will instead
use the smoothed isotropic total variation TVǫ of an image
u ∈ E defined as:

TVǫ(u) =
∑

i∈Ω

√
|∇u|[i]2 + ǫ2. (10)

The parameter ǫ allows to smooth the singularity of the regular
total-variation that is recovered when ǫ = 0.

The nested optimization procedure to solve is therefore:

F (k) = arg min
u∈E

1

2
‖k ⋆u−u0‖

2
2+λTVǫ(u) = G(u, k). (11)

In practice F (k) is never reached and we are always given
an procedure F that approximately solves (11). In the follow-
ing, we make the abuse of notation that F is the optimization
procedure e.g. F can be a gradient-descent scheme of L
iterations. In this case F (k) gives an approximation of u∗ the
minimizer of (11).

E. Sharpness index

The choice of J is also crucial. it has been shown in [5]
that most of the usual regularizers used in [2], [3], [4] - e.g.
total variation, sparsity in wavelet domain - suffer from the
pitfall of the trivial solution i.e. the global minimizer of J
is the projection of the identity on the manifold of kernels.
To copt out this issue we chose to use a measure of phase
coherence of the image.

The sharpness index has been introduced in [17] as a
measure of the Global Phase Coherence (GPC) of an image.
The key idea behind this notion is that the phase coefficients of
an image encode its geometry. The global coherence measures
how much this geometry varies when the phase information
is perturbed. Let ûψ(ξ) = |û(ξ)|eiψ(ξ) denote the randomly
perturbed image with a uniform odd random phase function
ψ. The geometry of an image can be characterized by its total
variation. This leads to the following definition of global phase
coherence:

GPC(u) = − log10 P(TV (uψ) ≤ TV (u)). (12)

The bigger the GPC is, the smaller is the probability of the TV
to decrease by phase perturbations, meaning that the image is
sharper.

The critical issue of the GPC is that there is no closed form
formula to evaluate (12). This issue can be circumvented by
considering a relaxation of the random image model ûψ by

û ⋆ W = |û(ξ)||Ŵ (ξ)|ei(arg û+arg Ŵ ) where W is a Gaussian

white noise with standard deviation N−1/2. Here, both the
modulus and the phase of the image are perturbed. It can be
shown that those two image models are close see [17]. We
define the sharpness index as:

SI(u) = − log10 P(TV (u ⋆W ) ≤ TV (u)). (13)

The main advantage of using SI is that u⋆W is approximately
Gaussian - see again [17] for asymptotic results. Therefore, SI
can be evaluated as

SI(u) = − log10 Φ

(
µ− TV (u)

σ

)
, (14)

where Φ(t) =
∫∞

t
e−s

2/2ds is the Gaussian tail and µ =
E[TV (u ⋆ W )] and σ2 = Var(TV (u ⋆ W )). The mean µ and
the variance σ2 can be computed explicitly as functions of u
using a few number of FFTs [17].

Two problems arise with the use of such function. First, the
SI is neither concave or convex. This will require to input good
initialization of the gradient descent on the manifold. This can
be done exploiting the coarse to fine structure of the GMRA.
Second, it is non-smooth. To overcome this difficulty, we will
use the SIǫ defined with TVǫ instead of TV in (14).

F. Bi-level optimization

In this subsection, we are interested in computing the
extrinsic gradient of J in (7) with R = TVǫ and J = SI .
This gradient involves the derivative of the solution given by
the algorithm with respect to the kernel. This idea has been
similarly investigated in [18], [19].

Problem (11) can be solved using a gradient descend:

• u(l+1) = u(l) − τ∇uG(u
(l), k).

The convergence of G(u(l), k) to G(u∗, k) is guaranteed as
long as τ < 2/L where L is the Lipschitz constant of ∇uG.
Moreover, if G is a C2 strongly convex function with M -
Lipschitz Hessian, then the convergence of u(l) to u∗ is ensured
in a linear rate provided some choice on the step-size and that
the initial guess u(0) is closed enough of the solution [20]. The
gradient descent can be accelerated using some acceleration
like Nesterov’s ones [20].

For gradient descent schemes with L iterations, the map-
ping F is defined by k 7→ u(L). We are interested in computing
the Jacobian of u(L) with respect to k obtained through the
iterative algorithm u(l+1) = ψ(u(l), k) = u(l)−τ∇uG(u

(l), k).
By commodity, we let Fl denote the map k 7→ u(l). The
Jacobian ∇F (k) = ∇FL(k) can be obtained recursively
through the chain rule

∇Fl+1(k) = ∇uψ(u
(l), k)∇Fl(k) +∇kψ(u

(l), k)

= (Id− τ∇u∇G(u))∇Fl(k)− τ∇k∇G(u)
(15)

The Jacobian ∇Fl(k) is of size N ×K, ∇uψ(u
(l), k) is of

size N × N and ∇kψ(u
(l), k) of size N ×K. This matrices

can be huge for images commonly encountered in applications.
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However these matrices can be efficiently applied to arbitrary
vectors with convolutions. The computation of the gradient is
therefore of the order same as one evaluation of F .

IV. NUMERICAL EXPERIMENTS

In this section, we will study the behavior of the method
on simulated data. In this setting, we use a skewed Gaussian
model in 1d of the form:

h(t) ∝ e−
t2

2α2

∫ βt

−∞

e−
s2

2 ds, (16)

where α > 0 and β ∈ R are respectively the variance and
the shape parameters. Then, p = 2, 000 sets of parameters are
i.i.d. sampled from µ an uniform probability distribution on
the product space [1, 5]× [−3/2, 3/2]. We let {ki}

p
i=1 denote

the associated kernels.

The GMRA algorithm is run on these kernels and outputs
a multi-scale approximation of the manifold. A new kernel k0
is picked at random from µ and generate the degraded signal
u0 = k ⋆ u+ η where η is a Gaussian white noise.

Finally we run the gradient descent algorithm on the fifth
scale of the GMRA. With L = 20 iterations and starting point
the center of the root cell, we obtain the results displayed in
Figure 1.

V. CONCLUSION AND FUTURE WORKS

We proposed a numerical method allowing to learn the
physic of degradations (1) i.e. estimating a manifold of small
intrinsic dimension. We also designed a restoration method
taking advantage of this extra knowledge.

Many methodological and theoretical questions have not
been addressed yet. Other functions R and J can be investi-
gated. Especially, it would be of great interest to chose them
so that J can allow to derive recovery guarantees as [6], [7],
[8]. Furthermore, the performances of the gradient descent on

the manifold should be studied when run on the estimation M̂
given on the GMRA.

The final goal of this method is to be used for spatially
varying blur operators. It will drastically reduce the number
of parameters to estimate from N2 to m.
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Fig. 1: Illustration of the output of the gradient descent algorithm. Top left: the original signal and its degraded version. Bottom
left: the exact kernel k0, and the estimated one. Top right: the restored signals using the exact filter and the estimated one.
Bottom right: the manifold of the three first coordinates. The points are colored w.r.t. the value of the cost function. The red
cross shows the location of h0, and the green one of the estimated kernel. The black path shows the iterates of the gradient
descent.
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