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Abstract We consider a class of linear integral oper-

ators with impulse responses varying regularly in time

or space. These operators appear in a large number of

applications ranging from signal/image processing to

biology. Evaluating their action on functions is a com-

putationally intensive problem necessary for many prac-

tical problems. We analyze a technique called product-

convolution expansion: the operator is locally approxi-

mated by a convolution, allowing to design fast numer-

ical algorithms based on the fast Fourier transform. We

design various types of expansions, provide their ex-

plicit rates of approximation and their complexity de-

pending on the time varying impulse response smooth-

ness. This analysis suggests novel wavelet based imple-

mentations of the method with numerous assets such as

optimal approximation rates, low complexity and stor-

age requirements as well as adaptivity to the kernels

regularity. The proposed methods are an alternative

to more standard procedures such as panel clustering,

cross approximations, wavelet expansions or hierarchi-

cal matrices.
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1 Introduction

We are interested in the compact representation and

fast evaluation of a class of space or time varying linear

integral operators with regular variations. Such opera-

tors appear in a large number of applications ranging

from wireless communications [37,28] to seismic data

analysis [23], biology [22] and image processing [38].

In all these applications, a key numerical problem

is to efficiently evaluate the action of the operator and

its adjoint on given functions. This is necessary - for

instance - to design fast inverse problems solvers. The

main objective of this paper is to analyze the complex-

ity of a set of approximation techniques coined product-

convolution expansions.

We are interested in bounded linear integral opera-

tors H : L2(Ω) → L2(Ω) defined from a kernel K by:

Hu(x) =

∫
Ω

K(x, y)u(y) dy. (1)

for all u ∈ L2(Ω), where Ω = R \ Z is the one dimen-

sional torus. Extensions to bounded and higher dimen-

sional domains will be mentioned at the end of the pa-
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per. Evaluating integrals of type (1) is a major challenge

in numerical analysis and many methods have been de-

veloped in the literature. Nearly all methods share the

same basic principle: decompose the operator kernel as

a sum of low rank matrices with a multi-scale struc-

ture. This is the case in panel clustering methods [24],

hierarchical matrices [6], cross approximations [35] or

wavelet expansions [3,13,14]. The method proposed in

this paper basically shares the same idea, except that

the time varying impulse response T of the operator is

decomposed instead of the kernel K. The time varying

impulse response (TVIR) T of H is defined by:

T (x, y) = K(x+ y, y), ∀(x, y) ∈ Ω ×Ω. (2)

The TVIR representation of H allows formalizing the

notion of regularly varying integral operator: the func-

tions T (x, ·) should be “smooth” for all x ∈ Ω. In-

tuitively, the smoothness assumption means that two

neighboring impulse responses should only differ slightly.

Under this assumption, it is tempting to approximateH

locally by a convolution. Two different approaches have

been proposed in the literature to achieve this. The first

one is called convolution-product expansion of order m

and consists of approximating H by an operator Hm of

type:

Hmu =

m∑
k=1

wk � (hk ? u), (3)

where hk and wk are real-valued functions defined on Ω,

� denotes the standard multiplication for functions and

the Hadamard product for vectors, and ? denotes the

convolution operator. The second one, called product-

convolution expansion of order m, is at the core of this
paper and consists of using an expansion of type:

Hmu =

m∑
k=1

hk ? (wk � u). (4)

Function wk is usually chosen as a windowing function

localized in space, while hk is a kernel describing the

operator on the support of wk. These two types of ap-

proximations have been used for a long time in the field

of imaging (and to a lesser extent mobile communica-

tions and biology) and progressively became more and

more refined [40,34,21,22,28,1,27,33,17]. In particular,

the recent work [17] provides a nice overview of ex-

isting choices for the functions hk and wk as well as

new ideas leading to significant improvements. Many

different names have been used in the literature to de-

scribe expansions of type (3) and (4) depending on

the communities: sectional methods, overlap-add and

overlap-save methods, piecewise convolutions, anisopla-

natic convolutions, parallel product-convolution, filter

flow, windowed-convolutions... The term product-convolution

comes from the field of mathematics [7] 1. We believe

that it precisely describes the set of expansions of type

(3) and therefore chose this naming. It was already

used in the field of imaging by [1]. Now that product-

convolution expansions have been described, natural

questions arise:

i) How to choose the functions hk and wk?

ii) What is the numerical complexity of evaluating prod-

ucts of type Hmu?

iii) What is the resulting approximation error ‖Hm −
H‖, where ‖·‖ is a norm over the space of operators?

iv) How many operations are needed in order to obtain

an approximation Hm such that ‖Hm −H‖ ≤ ε?

Elements i) and ii) have been studied thoroughly and

improved over the years in the mentioned papers. The

main questions addressed herein are points iii) and iv).

To the best of our knowledge, they have been ignored

until now. They are however necessary in order to eval-

uate the theoretical performance of different product-

convolution expansions and to compare their respective

advantages precisely.

The main outcome of this paper is the following:

under smoothness assumptions of type T (x, ·) ∈ Hs(Ω)

for all x ∈ Ω (the Hilbert space of functions in L2(Ω)

with s derivatives in L2(Ω)), most methods proposed in

the literature - if implemented correctly - ensure a de-

cay of type ‖Hm−H‖HS = O(m−s), where ‖·‖HS is the

Hilbert-Schmidt norm. Moreover, this bound cannot be

improved uniformly on the considered smoothness class.

By adding a support condition of type supp(T (x, ·)) ⊆
[−κ/2, κ/2], the bound becomes ‖Hm−H‖HS = O(

√
κm−s).

More importantly, bounded supports allow reducing the

computational burden. After discretization on n time

points, we show that the number of operations required

to satisfy ‖Hm−H‖HS ≤ ε vary fromO
(
κ

1
2sn log2(n)ε−1/s

)
to O

(
κ

2s+1
2s n log2(κn)ε−1/s

)
depending on the choices

of wk and hk. We also show that the compressed op-

erator representations of Meyer [32] can be used under

additional regularity assumptions.

An important difference of product-convolution ex-

pansions compared to most methods in the literature

[24,6,35,3,20] is that they are insensitive to the smooth-

ness of T (·, y). The smoothness in the x direction is a

useful property to control the discretization error, but

not the approximation rate. The proposed methodology

might therefore be particularly competitive in applica-

tions with irregular impulse responses.

1 With the terminology of [7], the name product-
convolution would have been convolution-product and vice-
versa. The name product-convolution seems more appropriate
to describe a product followed by a convolution.
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The paper is organized as follows. In section 2, we

describe the notation and introduce a few standard re-

sults of approximation theory. In section 3, we precisely

describe the class of operators studied in this paper,

show how to discretize them and provide the numer-

ical complexity of evaluating product-convolution ex-

pansions of type (4). Sections 4 and 5 contain the full

approximation analysis for two different kinds of ap-

proaches called linear or adaptive methods. Section 6

contains a summary and a few additional comments.

2 Notation

Let a and b denote functions depending on some pa-

rameters. The relationship a � b means that a and b

are equivalent, i.e. that there exists 0 < c1 ≤ c2 such

that c1a ≤ b ≤ c2a. Constants appearing in inequalities

will be denoted by C and may vary at each occurrence.

If a dependence on a parameter exists (e.g. ε), we will

use the notation C(ε).

In most of the paper, we work on the unit circle Ω =

R\Z sometimes identified with the interval
[
− 1

2 ,
1
2

]
. This

choice is driven by simplicity of exposition and the re-

sults can be extended to bounded domains such as Ω =

[0, 1]d (see section 6.2). Let L2(Ω) denote the space of

square integrable functions on Ω. The Sobolev space

Hs(Ω) is defined as the set of functions in L2(Ω) with

weak derivatives up to order s in L2(Ω). The k-th weak

derivative of u ∈ Hs(Ω) is denoted u(s). The norm and

semi-norm of u ∈ Hs(Ω) are defined by:

‖u‖Hs(Ω) =

s∑
k=0

‖u(k)‖L2(Ω) and |u|Hs(Ω) = ‖u(s)‖L2(Ω).

(5)

The sequence of functions (ek)k∈Z where ek : x 7→
exp(−2iπkx) is an orthonormal basis of L2(Ω) (see e.g.

[29]).

Definition 1 Let u ∈ L2(Ω) and ek : x 7→ exp(−2iπkx)

denote the k-th Fourier atom. The Fourier series coef-

ficients û[k] of u are defined for all k ∈ Z by:

û[k] =

∫
Ω

u(x)ek(x) dx. (6)

The spaceHs(Ω) can be characterized through Fourier

series.

Lemma 1 (Fourier characterization of Sobolev

norms)

‖u‖2Hs(Ω) �
∑
k∈Z
|û[k]|2(1 + |k|2)s. (7)

Definition 2 (B-spline of order α) Let α ∈ N and

m ≥ α + 2 be two integers. The B-spline of order 0 is

defined by

B0,m = 1[−1/(2m),1/(2m)]. (8)

The B-spline of order α ∈ N∗ is defined by recurrence

by:

Bα,m = mB0,m ? Bα−1,m = mαB0,m ? . . . ? B0,m︸ ︷︷ ︸
α times

. (9)

The set of cardinal B-splines of order α is denoted

Bα,m and defined by:

Bα,m =

{
f(·) =

m−1∑
k=0

ckBα,m(· − k/m),

ck ∈ R, 0 ≤ k ≤ m− 1

}
.

(10)

In this work, we use the Daubechies wavelet basis

for L2(R) [15]. We let φ and ψ denote the scaling and

mother wavelets and assume that the mother wavelet

ψ has α vanishing moments, i.e.

∀0 ≤ m < α,

∫
[0,1]

tmψ(t)dt = 0. (11)

Daubechies wavelets satisfy supp(ψ) = [−α+ 1, α], see

[31, Theorem 7.9, p. 294]. Translated and dilated ver-

sions of the wavelets are defined, for all j > 0 by

ψj,l(x) = 2j/2ψ
(
2jx− l

)
. (12)

The set of functions (ψj,l)j∈N,l∈Z , is an orthonormal

basis of L2(R) with the convention ψ0,l = φ(x − l).

There are different ways to construct a wavelet ba-

sis on the interval [−1/2, 1/2] from a wavelet basis on

L2(R). Here, we use boundary wavelets defined in [12].

We refer to [16,31] for more details on the construc-

tion of wavelet bases. This yields an orthonormal basis

(ψλ)λ∈Λ of L2(Ω), where

Λ =
{

(j, l), j ∈ N, 0 ≤ l ≤ 2j
}
. (13)

We let Iλ = supp(ψλ) and for λ ∈ Λ, we use the nota-

tion |λ| = j.

Let u and v be two functions in L2(Ω), the notation

u ⊗ v will be used both to indicate the function w ∈
L2(Ω ×Ω) defined by

w(x, y) = (u⊗ v)(x, y) = u(x)v(y), (14)

or the Hilbert-Schmidt operator w : L2(Ω) → L2(Ω)

defined for all f ∈ L2(Ω) by:

w(f) = (u⊗ v)f = 〈u, f〉v. (15)
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The meaning can be inferred depending on the context.

Let H : L2(Ω) → L2(Ω) denote a linear integral oper-

ators. Its kernel will always be denoted K and its time

varying impulse response T . The linear integral opera-

tor with kernel T will be denoted J .

The following result is an extension of the singular

value decomposition to operators.

Lemma 2 (Schmidt decomposition [36, Theorem

2.2] or [26, Theorem 1 p. 215]) Let H : L2(Ω) →
L2(Ω) denote a compact operator. There exists two fi-

nite or countable orthonormal systems {e1, . . .}, {f1, . . .}
of L2(Ω) and a finite or infinite sequence σ1 ≥ σ2 ≥ . . .
of positive numbers (tending to zero if it is infinite),

such that H can be decomposed as:

H =
∑
k≥1

σk · ek ⊗ fk. (16)

A function u ∈ L2(Ω) is denoted in regular font

whereas its discretized version u ∈ Rn is denoted in

bold font. The value of function u at x ∈ Ω is denoted

u(x), while the i-th coefficient of vector u ∈ Rn is de-

noted u[i]. Similarly, an operator H : L2(Ω) → L2(Ω)

is denoted in upper-case regular font whereas its dis-

cretized version H ∈ Rn×n is denoted in upper-case

bold font.

3 Preliminary facts

In this section, we gather a few basic results necessary

to derive approximation results.

3.1 Assumptions on the operator and examples

All the results stated in this paper rely on the assump-

tion that the TVIR T of H is a sufficiently simple func-

tion. By simple, we mean that i) the functions T (x, ·)
are smooth for all x ∈ Ω and ii) the impulse responses

T (·, y) have a bounded support or a fast decay for all

y ∈ Ω.

There are numerous ways to capture the regularity

of a function. In this paper, we assume that T (x, ·) lives

in the Hilbert spaces Hs(Ω) for all x ∈ Ω. This hypoth-

esis is deliberately simple to clarify the proofs and the

main ideas.

Definition 3 (Class T s) We let T s denote the class

of functions T : Ω × Ω → R satisfying the smoothness

condition: T (x, ·) ∈ Hs(Ω), ∀x ∈ Ω and ‖T (x, ·)‖Hs(Ω)

is uniformly bounded in x, i.e:

sup
x∈Ω
‖T (x, ·)‖Hs(Ω) ≤ C < +∞. (17)

Note that if T ∈ T s, then H is a Hilbert-Schmidt op-

erator since:

‖H‖2HS =

∫
Ω

∫
Ω

K(x, y)2 dx dy (18)

=

∫
Ω

∫
Ω

T (x, y)2 dx dy (19)

=

∫
Ω

‖T (x, ·)‖2L2(Ω) dx < +∞. (20)

We will often use the following regularity assump-

tion.

Assumption 1 The TVIR T of H belongs to T s.

In many applications, the impulse responses have a

bounded support, or at least a fast spatial decay allow-

ing to neglect the tails. This property will be exploited

to design faster algorithms. This hypothesis can be ex-

pressed by the following assumption.

Assumption 2 T (x, y) = 0,∀|x| > κ/2.

3.2 Examples

We provide 3 examples of kernels that may appear in

applications. Figure 1 shows each kernel as a 2D image,

the associated TVIR and the spectrum of the operator

J (the linear integral operator with kernel T ) computed

with an SVD.

Example 1 A typical kernel that motivates our study is

defined by:

K(x, y) =
1√

2πσ(y)
exp

(
− (x− y)2

2σ2(y)

)
. (21)

The impulse responses K(·, y) are Gaussian for all y ∈
Ω. Their variance σ(y) > 0 varies depending on the

position y. The TVIR of K is defined by:

T (x, y) =
1√

2πσ(y)
exp

(
− x2

2σ2(y)

)
. (22)

The impulse responses T (·, y) are not compactly sup-

ported, therefore, κ = 1 in Assumption 2. However, it is

possible to truncate them by setting κ = 3 supy∈Ω σ(y)

for instance. This kernel satisfies Assumption 1 only if

σ : Ω → R is sufficiently smooth. In Figure 1, left col-

umn, we set σ(y) = 0.08 + 0.02 cos(2πy).

Example 2 The second example is given by:

T (x, y) =
2

σ(y)
max(1− 2σ(y)|x|, 0). (23)
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The impulse responses T (·, y) are cardinal B-splines of

degree 1 and width σ(y) > 0. They are compactly sup-

ported with κ = supy∈Ω σ(y). This kernel satisfies As-

sumption 2 only if σ : Ω → R is sufficiently smooth. In

Figure 1, central column, we set σ(y) = 0.1+0.3(1−|y|).
This kernel satisfies Assumption 1 with s = 1.

Example 3 The last example is a discontinuous TVIR.

We set:

T (x, y) = gσ1
(x)1[−1/4,1/4](y)

+ gσ2
(x)(1− 1[−1/4,1/4](y)),

(24)

where gσ(x) = 1√
2π

exp
(
− x2

σ2

)
. This corresponds to the

last column in Figure 1, with σ1 = 0.05 and σ2 = 0.1.

For this kernel, both Assumptions 1 and 2 are violated.

Notice however that T is the sum of two tensor products

and can therefore be represented using only four 1D

functions. The spectrum of J should have only 2 non

zero elements. This is verified in Figure 1i, where the

spectrum is 0 (up to numerical errors of order 10−13),

except for the first two elements. .

3.3 Product-convolution expansions as low-rank

approximations

Though similar in spirit, convolution-product (3) and

product-convolution (4) expansions have a quite differ-

ent interpretation captured by the following lemma.

Lemma 3 The TVIR Tm of the convolution-product

expansion in (3) is given by:

Tm(x, y) =

m∑
k=1

hk(x)wk(x+ y). (25)

The TVIR Tm of the product-convolution expansion in

(4) is given by:

Tm(x, y) =

m∑
k=1

hk(x)wk(y). (26)

Proof We only prove (26) since the proof of (25) relies

on the same arguments. By definition:

(Hmu)(x) =

(
m∑
k=1

hk ? (wk � u)

)
(x) (27)

=

∫
Ω

m∑
k=1

hk(x− y)wk(y)u(y) dy. (28)

By identification, this yields:

Km(x, y) =

m∑
k=1

hk(x− y)wk(y), (29)

so that

Tm(x, y) =

m∑
k=1

hk(x)wk(y). (30)

As can be seen in (26), product-convolution expan-

sions consist of finding low-rank approximations of the

TVIR. This interpretation was already proposed in [17]

for instance and is the key observation to derive the

forthcoming results. The expansion (25) does not share

this simple interpretation and we do not investigate it

further in this paper.

3.4 Discretization

In order to implement a product-convolution expansion

of type 4, the problem first needs to be discretized. We

address this problem with a Galerkin formalism. Let

(ϕ1, . . . , ϕn) be a basis of a finite dimensional subspace

V n of L2(Ω). Given an operator H : L2(Ω) → L2(Ω),

we can construct a matrix Hn ∈ Rn×n defined for

all 1 ≤ i, j ≤ n by Hn[i, j] = 〈Hϕj , ϕi〉. Let Sn :

H 7→ Hn denote the discretization operator. From a

matrix Hn, an operator Hn can be reconstructed us-

ing, for instance, the pseudo-inverse Sn,+ of Sn. We let

Hn = Sn,+(Hn). For instance, if (ϕ1, . . . , ϕn) is an or-

thonormal basis of V n, the operator Hn is given by:

Hn = Sn,+(Hn) =
∑

1≤i,j≤n

Hn[i, j]ϕi ⊗ ϕj . (31)

This paper is dedicated to analyzing methods de-

notedAm that provide an approximationHm = Am(H)

of type (4), given an input operator H. Our analysis

provides guarantees on the distance ‖H −Hm‖HS de-

pending on m and the regularity properties of the in-

put operator H, for different methods. Depending on

the context, two different approaches can be used to

implement Am.

– Compute the matrix Hn
m = Sn(Hm) using numer-

ical integration procedures. Then create an opera-

tor Hn
m = Sn,+(Hn

m). This approach suffers from

two defects. First, it is only possible by assuming

that the kernel of H is given analytically. Moreover

it might be computationally intractable. It is illus-

trated below.

H -Am
Hm

-Sn
Hn

m
-Sn,+

Hn
m

– In many applications, the operator H is not given

explicitly. Instead, we only have access to its dis-

cretization Hn. Then it is possible to construct a

discrete approximation algorithmAm yielding a dis-

crete approximation Hn
m = Am(Hn). This matrix
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Fig. 1: Different kernels K, the associated TVIR T and the spectrum of the operator J . Left column corresponds

to Example 1. Central column corresponds to Example 2. Right column corresponds to Example 3.

can then be mapped back to the continuous world

using the pseudo-inverse: Hn
m = Sn,+(Hn

m). This is

illustrated below. In this paper, we will analyze the

construction complexity of Hn
m using this second

approach.

H -Sn
Hn -Am

Hn
m

-Sn,+
Hn
m

Ideally, we would like to provide guarantees on ‖H−
Hn
m‖HS depending on m and n. In the first approach,

this is possible by using the following inequality:

‖H −Hn
m‖HS ≤ ‖H −Hm‖HS︸ ︷︷ ︸

εa(m)

+ ‖Hm −Hn
m‖HS︸ ︷︷ ︸

εd(n)

, (32)

where εa(m) is the approximation error studied in this

paper and εd(n) is the discretization error. Under mild

regularity assumptions on K, it is possible to obtain

results of type εd(n) = O(n−γ), where γ depends on

the smoothness of K. For instance, if K ∈ Hr(Ω ×Ω),

the error satisfies εd(n) = O(n−r/2) for many bases in-

cluding Fourier, wavelets and B-splines [10]. For K ∈
BV (Ω×Ω), the space of functions with bounded varia-

tions, εd(n) = O(n−1/4), see [31, Theorem 9.3]. As will

be seen later, the approximation error εa(m) behaves

like O(m−s). As will be seen later, the proposed ap-

proximation technique will be of interest only in the

case m � n, since otherwise, it will require storing

too much data. Under this assumption, the discretiza-

tion error can be considered negligible compared to the

approximation error. In all the paper, we assume that

εd(n) is negligible compared to εa(m) without mention.



Approximation of integral operators using product-convolution expansions 7

In the second approach, the error analysis is more

complex since there is an additional bias due to the

algorithm discretization. This bias is captured by the

following inequality:

‖H −Hn
m‖HS ≤ ‖H −Hn‖HS︸ ︷︷ ︸

εd(n)

+ ‖Hn −Am(Hn)‖HS︸ ︷︷ ︸
εa(m)

+ ‖Am(Hn)−Hn
m‖HS︸ ︷︷ ︸

εb(m,n)

.

(33)

The bias

εb(m,n) = ‖Am(Sn,+(Sn(H)))−Sn,+(Am(Sn(H)))‖HS
(34)

accounts for the difference between using the discrete

or continuous approximation algorithm. In this paper,

we do not study this bias error and assume that it is

negligible compared to the approximation error εa.

3.5 Implementation and complexity

Let F n ∈ Cn×n denote the discrete inverse Fourier

transform and F ∗n denote the discrete Fourier trans-

form. Matrix-vector products F nu or F ∗nu can be eval-

uated in O(n log2(n)) operations using the fast Fourier

transform (FFT). The discrete convolution product v =

h?u is defined for all i ∈ Z by v[i] =
∑n
j=1 u[i−j]h[j],

with circular boundary conditions.

Discrete convolution products can be evaluated in

O(n log2(n)) operations by using the following funda-

mental identity:

v = F n · ((F ∗nh)� (F ∗nu)). (35)

Hence a convolution can be implemented using three

FFTs (O(n log2(n)) operations) and a point-wise multi-

plication (O(n) operations). This being said, it is straight-

forward to implement formula (4) with anO(mn log2(n))

algorithm.

Under the additional assumption that wk and hk
are supported on bounded intervals, the complexity can

be improved. We assume that, after discretization, hk
and wk are compactly supported, with support length

qk ≤ n and pk ≤ n respectively.

Lemma 4 A matrix-vector product of type (4) can be

implemented with a complexity that does not exceed

O

(
m∑
k=1

(pk + qk) log2(min(pk, qk))

)
operations.

Proof A convolution product of type hk ? (wk�u) can

be evaluated in O((pk+qk) log(pk+qk)) operations. In-

deed, the support of hk ? (wk � u) has no more than

pk+qk contiguous non-zeros elements. Using the Stock-

ham sectioning algorithm [39], the complexity can be

further decreased to O((pk + qk) log2(min(pk, qk))) op-

erations. This idea was proposed in [27].

4 Projections on linear subspaces

We now turn to the problem of choosing the functions

hk and wk in equation (4). The idea studied in this sec-

tion is to fix a subspace Em = span(ek, k ∈ {1, . . . ,m})
of L2(Ω) and to approximate T (x, ·) as:

Tm(x, y) =

m∑
k=1

ck(x)ek(y). (36)

For instance, the coefficients ck can be chosen so that

Tm(x, ·) is a projection of T (x, ·) onto Em. We pro-

pose to analyze three different family of functions ek:

Fourier atoms, wavelets atoms and B-splines. We ana-

lyze their complexity and approximation properties as

well as their respective advantages.

4.1 Fourier decompositions

It is well known that functions in Hs(Ω) can be well

approximated by linear combination of low-frequency

Fourier atoms. This loose statement is captured by the

following lemma.

Lemma 5 ([19,18]) Let f ∈ Hs(Ω) and fm denote

its partial Fourier series:

fm =

m∑
k=−m

f̂ [k]ek, (37)

where ek(y) = exp(−2iπky). Then

‖fm − f‖L2(Ω) ≤ Cm−s|f |Hs(Ω). (38)

The so-called Kohn-Nirenberg symbol N of H is de-

fined for all (x, k) ∈ Ω × Z by

N(x, k) =

∫
Ω

T (x, y) exp(−2iπky) dy. (39)

Illustrations of different Kohn-Nirenberg symbols are

provided in Figure 2.

Corollary 1 Set ek(y) = exp(−2iπky) and define Tm
by:

Tm(x, y) =
∑
|k|≤m

N(x, k)ek(y). (40)

Then, under Assumptions 1 and 2

‖Hm −H‖HS ≤ C
√
κm−s. (41)
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Proof By Lemma 5 and Assumption 1,

‖Tm(x, ·)− T (x, ·)‖L2(Ω) ≤ Cm−s

for some constant C and for all x ∈ Ω. In addition, by

Assumption 2, ‖Tm(x, ·) − T (x, ·)‖L2(Ω) = 0 for |x| >
κ/2. Therefore:

‖Hm −H‖2HS =

∫
Ω

∫
Ω

(Tm(x, y)− T (x, y))2 dx dy

(42)

=

∫
Ω

‖Tm(x, ·)− T (x, ·)‖2L2(Ω) dx (43)

≤ κC2m−2s dx (44)

As will be seen later, the convergence rate (41) is

optimal in the sense that no product-convolution ex-

pansion of order m can achieve a better rate under the

sole Assumptions 1 and 2.

Corollary 2 Let ε > 0 and set m = dCε−1/sκ1/2se.
Under Assumptions 1 and 2, Hm satisfies ‖H−Hm‖HS ≤
ε and products with Hm and H∗m can be evaluated with

no more than O(κ1/2sn log nε−1/s) operations.

Proof Since Fourier atoms are not localized in the time

domain, the modulation functions wk are supported on

intervals of size p = n. The complexity of computing a

matrix vector product is therefore O(mn log(n)) oper-

ations by Lemma 4.

Finally, let us mention that computing the discrete

Kohn-Nirenberg symbol N costs O(κn2 log2(n)) oper-

ations (κn discrete Fourier transforms of size n). The

storage cost of this Fourier representation is O(mκn)

since one has to store κn coefficients for each of the m

vectors hk.

In the next two sections, we show that replacing

Fourier atoms by wavelet atoms or B-splines preserves

the optimal rate of convergence in O(
√
κm−s), but has

the additional advantage of being localized in space,

thereby reducing complexity.

4.2 Spline decompositions

B-Splines form a Riesz basis with dual Riesz basis of

form [8]:

(B̃α,m(· − k/m))0≤k≤m−1. (45)

The projection fm of any f ∈ L2(Ω) onto Bα,m can be

expressed as:

fm = arg min
f̃∈Bα,m

‖f̃ − f‖22 (46)

=

m−1∑
k=0

〈f, B̃α,m(· − k/m)〉Bα,m(· − k/m). (47)

Theorem 1 ([4, p. 87] or [19, p. 420]) Let f ∈
Hs(Ω) and α ≥ s, then

‖f − fm‖2 ≤ C
√
κm−s‖f‖W s,2 . (48)

The following result directly follows.

Corollary 3 Set α ≥ s. For each x ∈ Ω, let (ck(x))0≤k≤m−1
be defined as

ck(x) = 〈T (x, ·), B̃α,m(· − k/m)〉. (49)

Define Tm by:

Tm(x, y) =

m−1∑
k=0

ck(x)Bα,m(y − k/m). (50)

If α ≥ s, then, under Assumptions 1 and 2,

‖Hm −H‖HS ≤ C
√
κm−s. (51)

Proof The proof is similar to that of Corollary (1).

Corollary 4 Let ε > 0 and set m = dCε−1/sκ1/2se.
Under Assumptions 1 and 2 Hm satisfies ‖H−Hm‖HS ≤
ε and products with Hm and H∗m can be evaluated with

no more than

O
((
s+ κ1+1/2sε−1/s

)
n log2(κn)

)
(52)

operations. For small ε and large n, the complexity be-

haves like

O
(
κ1+1/2sn log2(κn)ε−1/s

)
. (53)

Proof In this approximation, m B-splines are used to

cover Ω. B-splines have a compact support of size (α+

1)/m. This property leads to windowing vectorwk with

support of size p = d(α+1) nme. Furthermore the vectors

(hk) have a support of size q = κn. Combining these
two results with Lemma 4 and Corollary 3 yields the

result for the choice α = s.

The complexity of computing the vectors ck isO(κn2 log(n))

(κn projections with complexity n log(n), see e.g. [41]).

As can be seen in Corollary (4), B-splines approxi-

mations are preferable over Fourier decompositions when-

ever the support size κ is small.

4.3 Wavelet decompositions

Lemma 6 ([31, Theorem 9.5]) Let f ∈ Hs(Ω) and

fm denote its partial wavelet series:

fm =
∑

|µ|≤dlog2(m)e

cµψµ, (54)

where ψ is a Daubechies wavelet with α > s vanishing

moments and cµ = 〈ψµ, f〉. Then

‖fm − f‖L2(Ω) ≤ Cm−s|f |Hs(Ω). (55)
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Fig. 2: Kohn-Nirenberg symbols of the kernels given in Examples 1, 2 and 3 in log10 scale. Observe how the

decay speed from the center (low frequencies) to the outer parts (high frequencies) changes depending on the

TVIR smoothness. Note: the lowest values of the Kohn-Nirenberg symbol have been set to 10−4 for visualization

purposes.

A direct consequence is the following corollary.

Corollary 5 Let ψ be a Daubechies wavelet with α =

s+ 1 vanishing moments. Define Tm by:

Tm(x, y) =
∑

|µ|≤dlog2(m)e

cµ(x)ψµ(y), (56)

where cµ(x) = 〈ψµ, T (x, ·)〉. Then, under Assumptions

1 and 2

‖Hm −H‖HS ≤ C
√
κm−s. (57)

Proof The proof is identical to that of Corollary (1).

Proposition 1 Let ε > 0 and set m = dCε−1/sκ1/2se.
Under Assumptions 1 and 2 Hm satisfies ‖H−Hm‖HS ≤
ε and products with Hm and H∗m can be evaluated with

no more than

O
((
sn log2

(
ε−1/sκ1/2s

)
+ κ1+1/2snε−1/s

)
log2(κn)

)
(58)

operations. For small ε, the complexity behaves like

O
(
κ1+1/2sn log2(κn)ε−1/s

)
. (59)

Proof In (56), the windowing vectors wk are wavelets

ψµ of support of size min((2s+ 1)n2−|µ|, n). Therefore

each convolution has to be performed on intervals of

size |ψµ|+ q+ 1. Since there are 2j wavelets at scale j,

the total number of operations is:∑
µ | |µ|<log2(m)

(|ψµ|+ q + 1) log2(min(|ψµ|, q + 1))

(60)

≤
∑

µ | |µ|<log2(m)

((2s+ 1)n2−|µ| + κn) log2(κn) (61)

=

log2(m)−1∑
j=0

2j
(
(2s+ 1)n2−j + κn

)
log2(κn) (62)

=

log2(m)−1∑
j=0

(
(2s+ 1)n+ 2jκn

)
log2(κn) (63)

≤ ((2s+ 1)n log2(m) +mκn) log2(κn) (64)

=
(

(2s+ 1)n log2(ε−1/sκ1/2s) + ε−1/sκ1+1/2sn
)

log2(κn).

(65)

Computing the vectors cµ costs O(κsn2) operations

(κn discrete wavelet transforms of size n). The storage

cost of this wavelet representation is O(mκn) since one

has to store κn coefficients for each of the m functions

hk.

As can be seen from this analysis, wavelet and B-

spline approximations roughly have the same complex-

ity over the class T s. The main advantage of wavelets

compared to B-splines with fixed knots is that they

are known to characterize much more general function

spaces than Hs(Ω). For instance, if all functions T (x, ·)
have a single discontinuity at a given y ∈ Ω, only a

few coefficients cµ(x) will remain of large amplitude.

Wavelets will be able to efficiently encode the discon-

tinuity, while B-splines with fixed knots - which are

not localized in nature - will fail to well approximate

the TVIR. It is therefore possible to use wavelets in an

adaptive way. This effect is visible on Figure 3c: despite
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Fig. 3: “Wavelet symbols” of the operators given in Examples 1, 2 and 3 in log10 scale. The red bars indicate

separations between scales. Notice that the wavelet coefficients in kernel 1 rapidly decay as scales increase. The

decay is slower for kernels 2 and 3 which are less regular. The adaptivity of wavelets can be visualized in Kernel

3: some wavelet coefficients are non zero at large scales, but they are all concentrated around discontinuities.

Therefore only a few number of couples (cµ, ψµ) will be necessary to encode the discontinuities. This was not the

case with Fourier or B-spline atoms.

discontinuities, only wavelets localized around the dis-

continuities yield large coefficients. In the next section,

we propose two other adaptive methods, in the sense

that they are able to automatically adapt to the TVIR

regularity.

4.4 Interpolation VS approximation

In all previous results, we constructed the functions wk
and hk in 4 by projecting T (x, ·) onto linear subspaces.

This is only possible if the whole TVIR T is available.

In very large scale applications, this assumption is un-

realistic, since the TVIR contains n2 coefficients, which

cannot even be stored. Instead of assuming a full knowl-

edge of T , some authors (e.g. [34]) assume that the im-

pulse responses T (·, y) are available only at a discrete

set of points yi = i/m for 1 ≤ i ≤ m.

In that case, it is possible to interpolate the impulse

responses instead of approximating them. Given a lin-

ear subspace Em = span(ek, k ∈ {1, . . . ,m}), where the

atoms ek are assumed to be linearly independent, the

functions ck(x) in (36) are chosen by solving the set of

linear systems:

m∑
k=1

ck(x)ek(yi) = Tm(x, yi) for 1 ≤ i ≤ m. (66)

In the discrete setting, under Assumption 2, this amounts

to solving dκne linear systems of size m×m. The analy-

sis of such a method requires using very different tools.

We refer the interested reader to our recent work [5],

where we investigate the rates of convergence with re-

spect to the number of impulse responses, their geom-

etry and the level of noise on the data.

4.5 On Meyer’s operator representation

Up to now, we only assumed a regularity of T in the

y direction, meaning that the impulse responses vary

smoothly in space. In many applications, the impulse

responses themselves are smooth. In this section, we

show that this additional regularity assumption can be

used to further compress the operator. Finding a com-

pact operator representation is a key to treat identifi-

cation or estimation problems (e.g. blind deblurring in

imaging), see e.g. [30].

Since (ψλ)λ∈Λ is a Hilbert basis of L2(Ω), the set of

tensor product functions (ψλ⊗ψµ)λ∈Λ,µ∈Λ is a Hilbert

basis of L2(Ω×Ω). Therefore, any T ∈ L2(Ω×Ω) can

be expanded as:

T (x, y) =
∑
λ∈Λ

∑
µ∈Λ

cλ,µψλ(x)ψµ(y). (67)

The main idea of the construction in this section con-

sists of keeping only the coefficients cλ,µ of large am-

plitude. A similar idea was proposed in the BCR paper

[3]2, except that the kernel K was expanded instead of

the TVIR T . Decomposing T was suggested by Beylkin

at the end of [2] without a precise analysis.

In this section, we assume that T ∈ Hr,s(Ω × Ω),

where

Hr,s(Ω ×Ω) = {T :Ω ×Ω → R, ∂α1
x ∂α2

y T ∈ L2(Ω ×Ω),

∀α1 ∈ {0, . . . , r},∀α2 ∈ {0, . . . , s}}.
(68)

This space arises naturally in applications, where the

impulse response regularity r might differ from the reg-

2 This was also the basic idea in our recent paper [20].
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ularity s of their variations. Notice that H2s(Ω×Ω) ⊂
Hs,s(Ω ×Ω) ⊂ Hs(Ω).

Theorem 2 Assume that T ∈ Hr,s(Ω × Ω) and sat-

isfies Assumption 2. Assume that ψ has max(r, s) + 1

vanishing moments. Let cλ,µ = 〈T, ψλ ⊗ ψµ〉. Define

Hm1,m2
=

∑
|λ|≤log2(m1)

∑
|µ|≤log2(m2)

cλ,µψλ ⊗ ψµ. (69)

Let m ∈ N, set m1 = dms/(r+s)e, m2 = dmr/(r+s)e and

Hm = Hm1,m2 . Then

‖H −Hm‖HS ≤ C
√
κm−

rs
r+s . (70)

Proof First notice that

T∞,m2
=

∑
|µ|≤dlog2(m2)e

cµ ⊗ ψµ, (71)

where cµ(x) = 〈T (x, ·), ψµ〉. From Corollary 5, we get:

‖T∞,m2
− T‖L2(Ω×Ω) ≤ C

√
κm−s2 . (72)

Now, notice that cµ ∈ Hr(Ω). Indeed, for all 0 ≤ k ≤ r,
we get:∫
Ω

(∂kxcµ(x))2 dx (73)

=

∫
Ω

(
∂kx

∫
Ω

T (x, y)ψµ(y) dy

)2

dx (74)

=

∫
Ω

(∫
Ω

(∂kxT )(x, y)ψµ(y) dy

)2

dx (75)

≤
∫
Ω

‖(∂kxT )(x, ·)‖2L2(Ω)‖ψµ‖
2
L2(Ω) dx (76)

= ‖(∂kxT )‖L2(Ω×Ω) < +∞. (77)

Therefore, we can use Lemma 6 again to show:

‖T∞,m2 − Tm1,m2‖L2(Ω×Ω) ≤ C
√
κm−r1 . (78)

Finally, using the triangle inequality, we get:

‖T − Tm1,m2‖HS ≤ C
√
κ(m−r1 +m−s2 ). (79)

By setting m1 = m
s/r
2 , the two approximation errors in

the right-hand side of (79) are balanced. This motivates

the choice of m1 and m2 indicated in the theorem.

The approximation result in inequality (70) is worse

than the previous ones. For instance if r = s, then the

bound becomes O(
√
κm−s/2) instead of O(

√
κm−s) in

all previous theorems. The great advantage of this rep-

resentation is the operator storage: until now, the whole

set of vectors (cµ) had to be stored (O(κnm) values),

while now, only m coefficients cλ,µ are required. For in-

stance, in the case r = s, for an equivalent precision,

the storage cost of the new representation is O(κm2)

instead of O(κnm).

In addition, evaluating matrix-vector products can

be achieved rapidly by using the following trick:

Hmu =
∑

|λ|≤log2(m1)

∑
|µ|≤log2(m2)

cλ,µψλ ? (ψµ � u)

(80)

=
∑

|µ|≤log2(m2)

 ∑
|λ|≤log2(m1)

cλ,µψλ

 ? (ψµ � u).

(81)

By letting c̃µ =
∑
|λ|≤log2(m1)

cλ,µψλ, we get

Hmu =
∑

|µ|≤log2(m2)

c̃µ ? (ψµ � u). (82)

which can be can be computed in O(m2κn log2(κn))

operations. This remark leads to the following proposi-

tion.

Proposition 2 Assume that T ∈ Hr,s(Ω×Ω) and that

it satisfies Assumption 2. Set m =

⌈(
ε

C
√
κ

)−(r+s)/rs⌉
.

Then the operator Hm defined in Theorem 2 satisfies

‖H −Hm‖HS ≤ ε and the number of operations neces-

sary to evaluate a product with Hm or H∗m is bounded

above by O
(
ε−1/sκ

2s+1
2s n log2(n)

)
.

Notice that the complexity of matrix-vector prod-

ucts is unchanged compared to the wavelet or spline ap-

proaches with a much better compression ability. How-

ever, this method requires a preprocessing to compute

c̃µ with complexity ε−1/sκ1/2sn.

5 Adaptive decompositions

In the last section, all methods shared the same prin-

ciple: project T (x, ·) on a fixed basis for each x ∈ Ω.

Instead of fixing a basis, one can try to find a basis

adapted to the operator at hand. This idea was pro-

posed in [21] and [17].

5.1 Singular value decompositions

The authors of [21] proposed to use a singular value de-

composition (SVD) of the TVIR in order to construct

the functions hk and wk. In this section we first de-

tail this idea and then analyze it from an approxima-

tion theoretic point of view. Let J : L2(Ω) → L2(Ω)

denote the linear integral operator with kernel T ∈
T s. First notice that J is a Hilbert-Schmidt operator
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Fig. 4: Meyer’s representations of the operators in Examples 1, 2 and 3 in log10 scale.

since ‖J‖HS = ‖H‖HS . By Lemma 2 and since Hilbert-

Schmidt operators are compact, there exists two or-

thonormal bases (ek) and (fk) of L2(Ω) such that J

can be decomposed as

J =
∑
k≥1

σk · ek ⊗ fk, (83)

leading to

T (x, y) =

+∞∑
k=1

σkfk(x)ek(y). (84)

The following result is a standard.

Theorem 3 For a given m, a set of functions (hk)1≤k≤m
and (wk)1≤k≤m that minimizes ‖Hm − H‖HS is given

by:

hk = σkfk and wk = ek. (85)

Moreover, if T (x, ·) satisfies Assumptions 1 and 2, we

get:

‖Hm −H‖HS = O
(√
κm−s

)
. (86)

Proof The proof of optimality (86) is standard. Since

Tm is the best rank m approximation of T , it is neces-

sarily better than bound (41), yielding (86).

Theorem 4 For all ε > 0 and m < n, there exists an

operator H with TVIR satisfying 1 and 2 such that:

‖Hm −H‖HS ≥ C
√
κm−(s+ε). (87)

Proof In order to prove, (87), we construct a “worst

case” TVIR T . We first begin by constructing a kernel

T with κ = 1 to show a simple pathological TVIR.

Define T by:

T (x, y) =
∑
k∈Z

σkfk(x)fk(y), (88)

where fk(x) = exp(2iπkx) is the k-th Fourier atom,

σ0 = 0 and σk = σ−k = 1
|k|s+1/2+ε/2 for |k| ≥ 1. With

this choice,

T (x, y) =
∑
|k|≤N

2σk cos(2π(x+ y)) (89)

is real for all (x, y). We now prove that T ∈ T s. The

k-th Fourier coefficient of T (x, ·) is given by σkfk(x)

which is bounded by σk for all x. By Lemma 1, T (x, ·)
therefore belongs to Hs(Ω) for all x ∈ Ω. By construc-

tion, the spectrum of T is (|σk|)k∈N, therefore for any

rank 2m+ 1 approximation of T , we get:

‖T − T2m+1‖2HS ≥
∑

|k|≥m+1

1

|k|2s+1+ε
(90)

≥
∫ ∞
m+1

2

t2s+1+ε
dt (91)

=
1

2s+ ε

2

(m+ 1)2s+ε
(92)

= O(m−2s−ε), (93)

proving the result for κ = 1. Notice that the kernel K

of the operator with TVIR T only depends on x:

K(x, y) =
∑
|k|≤N

2σk cos(2πx). (94)

Therefore the worst case TVIR exhibited here is that

of a rank 1 operator H. Obviously, it cannot be well

approximated by product-convolution expansions.

Let us now construct a TVIR satisfying Assump-

tion 2. For this, we first construct an orthonormal basis

(f̃k)k∈Z of L2([−κ/2, κ/2]) defined by:

f̃k(x) =

{
1√
κ
fk
(
x
κ

)
if |x| ≤ κ

2 ,

0 otherwise.
(95)

The worst case operator considered now is defined by:

T (x, y) =
∑
k∈Z

σ̃kf̃k(x)fk(y). (96)



Approximation of integral operators using product-convolution expansions 13

Its spectrum is (|σ̃k|)k∈Z, and we get

|〈T (x, ·), fk〉| = |σ̃kf̃k(x)| = 1

κ
|σ̃k|. (97)

By Lemma 5, if σ̃k = κ
(1+|k|2)s|k|1+ε , then ‖T (x, ·)‖Hs(Ω)

is uniformly bounded by a constant independent of κ.

Moreover, by reproducing the reasoning in (90), we get:

‖T − T2m+1‖2HS = O(κm−2s−ε). (98)

Even if the SVD provides an optimal decomposition,

there is no guarantee that functions ek are supported

on an interval of small size. As an example, it suffices

to consider the “worst case” TVIR given in equation

(88). Therefore, vectors wk are generically supported

on intervals of size p = n. This yields the following

proposition.

Corollary 6 Let ε > 0 and set m = dCε−1/sκ1/2se.
Then Hm satisfies ‖H − Hm‖HS ≤ ε and a product

with Hm and H∗m can be evaluated with no more than

O(κ1/2sn log nε−1/s) operations.

Computing the first m singular vectors in (84) can

be achieved in roughlyO(κn2 log(m)) operations thanks

to recent advances in randomized algorithms [25]. The

storage cost for this approach is O(mn) since the vec-

tors ek have no reason to be compactly supported.

5.2 The optimization approach in [17]

In [17], the authors propose to construct the window-

ing functions wk and the filters hk using constrained

optimization procedures. For a fixed m, they propose

solving:

min
(hk,wk)1≤k≤m

∥∥∥∥∥T −
m∑
k=1

hk ⊗ wk

∥∥∥∥∥
2

HS

(99)

under an additional constraint that supp(wk) ⊂ ωk
with ωk chosen so that ∪mk=1ωk = Ω. A decomposition

of type 99 is known as structured low rank approxima-

tion [9]. This problem is non convex and to the best of

our knowledge, there currently exists no algorithm run-

ning in a reasonable time to find its global minimizer. It

can however be solved approximately using alternating

minimization like algorithms.

Depending on the choice of the supports ωk, dif-

ferent convergence rates can be expected. However, by

using the results for B-splines in section 4.2, we obtain

the following proposition.

Proposition 3 Set ωk = [(k − 1)/m, k/m+ s/m] and

let (hk, wk)1≤k≤m denote the global minimizer of (99).

Define Tm by Tm(x, y) =
∑m
k=1 hk(x)wk(y). Then:

‖T − Tm‖2HS ≤ C
√
κm−s. (100)

Set m = dκ1/2sCε−1/se, then ‖Hm−H‖HS ≤ ε and the

evaluation of a product with Hm or H∗m is of order

O(κ1+1/2sn log(n)ε−1/s). (101)

Proof First notice that cardinal B-Splines are also sup-

ported on [(k−1)/m, k/m+ s/m]. Since the method in

[17] provides the best choices for (hk, wk), the distance

‖Hm − H‖HS is necessarily lower than that obtained

using B-splines in Corollary 3.

Finally, let us mention that - owing to Corollary 5 -

it might be interesting to use the optimization approach

(99) with windows of varying sizes.

6 Summary and extensions

6.1 A summary of all results

Table 1 summarizes the results derived so far under

Assumptions 1 and 2. In the particular case of Meyer’s

methods, we assume that T ∈ Hr,s(Ω × Ω) instead of

Assumption 1. As can be seen in this table, different

methods should be used depending on the application.

The best methods are:

– Wavelets: they are adaptive, have a relatively low

construction complexity, and matrix-vector products

also have the best complexity.
– Meyer: this method has a big advantage in terms of

storage. The operator can be represented very com-

pactly with this approach. It has a good potential

for problems where the operator should be inferred

(e.g. blind deblurring). It however requires stronger

regularity assumptions.

– The SVD and the method proposed in [17] both

share an optimal adaptivity. The representation how-

ever depends on the operator and it is more costly

to evaluate it.

6.2 Extensions to higher dimensions

Most of the results provided in this paper are based on

standard approximation results in 1D, such as Lemmas

5, 6 and 1. All these lemmas can be extended to higher

dimension and we refer the interested reader to [19,31,

18,36] for more details.
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Method Approximation Product Construction Storage Adaptivity

Fourier 4.1 O
(
κ

1
2m−s

)
O
(
κ

1
2s n log(n)ε−

1
s

)
O(κn2 log(n)) O(mκn) 7

B-Splines 4.2 O
(
κ

1
2m−s

)
O
(
κ

2s+1
2s n log(n)ε−

1
s

)
O(κn2 log(n)) O(mκn) 7

Wavelets 4.3 O
(
κ

1
2m−s

)
O
(
κ

2s+1
2s n log(n)ε−

1
s

)
O(κsn2) O(mκn) 3

Meyer 4.5 O
(
κ

1
2m

− rs
r+s

)
O
(
κ

2s+1
2s n log(n)ε−

1
s

)
O(sn2) O(m) 3

SVD 5.1 O
(
κ

1
2m−s

)
O
(
κ

1
2s n log(n)ε−

1
s

)
O(κn2 log(m)) O(mn) 3

[17] 5.2 O
(
κ

1
2m−s

)
O
(
κ

2s+1
2s n log(n)ε−

1
s

)
High (iterative) O(mκn) 3

Table 1: Summary of the properties of different constructions. Approximation ≡ approximation rates in terms of

m. Product ≡ matrix-vector product complexity to get an ε approximation. Construction ≡ complexity of the

construction of order m representation. Storage ≡ cost of storage of a given representation. Adaptivity ≡ ability

to automatically adapt to different input operators.

We now assume that Ω = [0, 1]d and that the diam-

eter of the impulse responses is bounded by κ ∈ [0, 1].

Using the mentioned results, it is straightforward to

show that the approximation rate of all methods now

becomes

‖H −Hm‖HS = O(κd/2m−s/d). (102)

The space Ω can be discretized on a finite dimen-

sional space of size nd. Similarly, all complexity results

given in Table 1 are still valid by replacing n by nd,

ε−1/s by ε−d/s and κ by κd.

6.3 Extensions to least regular spaces

Until now, we assumed that the TVIR T belongs to

Hilbert spaces (see e.g. Assumption 1). This assump-

tion was deliberately chosen easy to clarify the presen-

tation. The results can most likely be extended to much

more general spaces using nonlinear approximation the-

ory results [18].

For instance, assume that T ∈ BV (Ω × Ω), the

space of functions with bounded variations. Then, it

is well known (see e.g. [11]) that T can be expressed

compactly on an orthonormal basis of tensor-product

wavelets. Therefore, the product-convolution expansion

4 could be used by using the trick proposed in 82.

Similarly, most of the kernels found in partial dif-

ferential equations (e.g. Calderòn-Zygmund operators)

are singular at the origin. Once again, it is well known

[32] that wavelets are able to capture the singularities

and the proposed methods can most likely be applied

to this setting too.

A precise setting useful for applications requires more

work and we leave this issue open for future work.

6.4 Controls in other norms

In all the paper we only controlled the Hilbert-Schmidt

norm ‖ · ‖HS . This choice simplifies the analysis and

also allows getting bounds for the spectral norm

‖H‖2→2 = sup
‖u‖L2(Ω)≤1

‖Hu‖L2(Ω), (103)

since ‖H‖2→2 ≤ ‖H‖HS . In applications, it often makes

sense to consider other operator norms defined by

‖H‖X→Y = sup
‖u‖X≤1

‖Hu‖Y , (104)

where ‖ · ‖X and ‖ · ‖Y are norms characterizing some

function spaces. We showed in [20] that this idea could

highly improve practical approximation results.

Unfortunately, it is not clear yet how to extend the
proposed results and algorithms to such a setting and

we leave this question open for the future. Let us men-

tion that our previous experience shows that this idea

can highly change the method’s efficiency.

7 Conclusion

In this paper, we analyzed the approximation rates and

numerical complexity of product-convolution expansions.

This approach was shown to be efficient whenever the

time or space varying impulse response of the operator

is well approximated by a low rank tensor. We showed

that this situation occurs under mild regularity assump-

tions, making the approach relevant for a large class of

applications. We also proposed a few original implemen-

tations of this methods based on orthogonal wavelet de-

compositions and analyzed their respective advantages

precisely. Finally, we suggested a few ideas to further

improve the practical efficiency of the method.



Approximation of integral operators using product-convolution expansions 15

References

1. Muthuvel Arigovindan, Joshua Shaevitz, John Mc-
Gowan, John W Sedat, and David A. Agard. A par-
allel product-convolution approach for representing the
depth varying point spread functions in 3d widefield mi-
croscopy based on principal component analysis. Opt.
Express, 18(7):6461–6476, 2010.

2. Gregory Beylkin. On the representation of operators in
bases of compactly supported wavelets. SIAM J. Numer.
Anal., 29(6):1716–1740, 1992.

3. Gregory Beylkin, Ronald Coifman, and Vladimir
Rokhlin. Fast wavelet transforms and numerical algo-
rithms I. Appl. Comput. Harmon. A., 44(2):141–183,
1991.

4. Anatoly Yu Bezhaev and Vladimir Aleksandrovich
Vasilenko. VARIATIONAL THEORY OF SPLINES.
Springer, 2001.

5. Jérémie Bigot, Paul Escande, and Pierre Weiss. Estima-
tion of linear operators from scattered impulse responses.
arXiv preprint arXiv:1610.04056, 2016.
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