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Restoration of images degraded by spatially varying blurs is an issue of increasing importance. Many new op-
tical systems allow to know the system point spread function at some random locations, by using microscopic
luminescent structures. Given a set of impulse responses, we propose a fast and efficient algorithm to recons-
truct the blurring operator in the whole image domain. Our method consists in finding an approximation of
the integral operator by operators diagonal in the wavelet domain. Interestingly, this method complexity scales
linearly with the image size. It is thus applicable to large 3D problems. We show that this approach might out-
perform previously proposed strategies such as linear interpolations (Nagy and O’Leary, 1998) or separable
approximations (Zhang et al., 2007). We provide various theoretical and numerical results in order to justify
the proposed methods. We also show preliminary deblurring results illustrating the relevance of our formalism.

1 INTRODUCTION

Image restoration in the presence of spatially varying
blur is a problem of increasing importance. It was first
studied in the context of satellite imaging with Hubble
space telescope (Nagy and O’Leary, 1998). It is now
becoming increasingly important with the emergence
of new fluorescence microscopes, producing highly
deteriorated images, since light interacts with the bio-
logical tissues. In microscopy, it is often possible to
incorporate micro-beads in the medium surrounding
the sample or even in the sample itself, giving ac-
cess to the point spread function (PSF) of the system
at some known locations (see e.g. (Preibisch et al.,
2010; Temerinac-Ott et al., 2011)). This information
allows to interpolate the PSF in the whole space and
thus to get approximations of the degradation opera-
tor for further processing.

In the case of spatially invariant blur, fast decon-
volution algorithms can be devised since the convo-
lution is diagonal in the Fourier domain. This allows
using O(dnlog(n)) algorithms (where d denotes the
space dimension and n? denotes the number of pixels)
based on the fast Fourier transform. These approaches
are unsuitable in the case of spatially varying blurs
and it appeals for the development of new fast nume-
rical algorithms. Our aim in this paper is to propose

fast O(n¢) algorithms based on the wavelet or wavelet
packet transforms.

We consider a blurring operator H in R¢ and defi-
ned for any u € L*(Q) as the following integral ope-
rator :

Vx € Q, (Hu)(x) = /

yeQ

K(x,y)u(y)dy, (1)

where Q C R? is the image domain. The function
K(x,-) is a spatially varying kernel defining the PSF
at each location x. In all the following, we assume that
H is a bounded linear operator from L?(Q) to L*(Q).
The most naive approach to compute Hu numerically
consists in discretizing (1) by :

Vx € X, Hu(x) = Z)‘,{K(w)u(y%

where X C Q denotes the set of pixels locations. This
approach is simple to implement, but costs O(n>?)
arithmetic operations. This is unsuitable for large 2D
images or medium sized 3D images. Two alternative
approaches are commonly used :
— The first one consists in approximating K (x, )
by a tensor product of kind :

QU

K(x’ (yla'” 7yd)) = HKk(xvyk)'
k=1



FIGURE 1 — An orthogonal view of a Variable Refractive
Gibson and Lanni PSF obtained with the PSF Generator
plugin for ImageJ (Kirshner et al., 2011)

This reduces the computational cost to
O(dn?*1) operations which is usually tractable
even in large scale scenarii. Moreover this
model is exact for Gaussian PSF which some-
times accurately describe perfect microscopy
systems (Zhang et al., 2007). Unfortunately, it
is too rough to describe more complex patterns
commonly encountered in optical diffraction or
sample induced degradations. Figure 1 shows a
typical PSF in three dimensions, which cannot
be approximated by separable functions.

— The second one consists in using piecewise
constant blurs using local FFT (Nagy and
O’Leary, 1998; Hansen et al., 2006). Its com-
plexity is roughly the same as that of spatially
invariant blurs in O(dn“log(n)). Moreover, this
approach also allows to use linear interpolations
of the PSF. This might be interesting in our case
since the PSF is known only at a few positions
and linear interpolations allow an operator re-
construction on the whole image domain. Un-
fortunately, piecewise constant blurs or linear
interpolations are too rough to describe some
practical settings. This is illustrated on Figure
9(b), where we can observe that the linear in-
terpolation gives a cross like PSF in the middle,
that would be undesirable in practical cases.

In this work, we propose to approximate H by
operators diagonal in wavelet or wavelet packet trans-
forms. More precisely, we show that H ~ WX¥*,
where W denotes the wavelet transform and X is a dia-
gonal matrix. The computation of Hu is thus reduced

to O(n?) operations.

The structure of the paper is as follows. In section
3, we justify the use of such a structure by theoretical
and numerical results. In section 4, we propose an al-
gorithm to reconstruct the diagonal operator £ when
the impulse response of H is given at some known lo-
cations. Finally, we present a deconvolution algorithm
and some results in section 5.

2 NOTATION

In order to simplify the notation, we consider wave-
let transforms and not wavelet packet transforms. We
present the theoretical results in 1D for the sake of
simplicity and clarity and the experimental results in
2D. The proposed approaches can be extended to any
dimensions and would be particularly suited to large
3D problems.

We consider an orthogonal wavelet basis of
L2(R) :

{0190t nez UV n} j<ignezs

where

Vjn(t) = V27y(2 1 —n), )

and y is the mother wavelet. The function ¢y, , is de-
fined by

Oipn(t) = V2-l0¢(270r —n),

where ¢ is the scaling function.

In all the paper, ¥* denotes the forward wavelet
transform and W denotes its inverse (in the discrete
and in the continuous setting). #* denotes the Fourier
transform (discrete or continuous) and ¥ denotes its
inverse. The convolution between u and 4 is denoted
hxu. The Fourier transform of u is denoted # or F *u

The indicator function of a convex and closed set
C C R" is denoted %, and defined as :

0 if xeC
mw:{ if x

400 otherwise.

The proximal operator or resolvent of a convex, clo-
sed function F : R" — R U {+eo} is defined for all
xp € R" by :

. 1
(I+9F*)~!(x) = argmin F (x) + = [|x — xo]|3.
xeR" 2

For a discrete image in R4, we define the discrete
partial derivative in direction i by :

u(<k+1,)—u(- k) if 1<k<n
sty ={ WA HCR) 1<k



where the indice £ is that the i-th position in the array.
The discrete gradient operator in R? is defined by :

0
0>
V= .
da
Let g € (R”d)d represent a discrete vector field. We
set
q1
q
q= .
qd

The isotropic /' -norm in (R"d)d is defined by :

Finally, the discrete total variation of u € R"d is defi-
ned by :
TV () = ||Va 1 2.

3 DIAGONALIZATION OF THE
VARIABLE BLUR OPERATOR
IN A WAVELET BASIS

The main ingredient allowing the design of efficient
deconvolution algorithms is the fact that a convolu-
tion is diagonalized in the Fourier domain. For any
kernel h, hxu = FXF *u where ¥ can be considered
as a diagonal operator that multiplies F *u by ¥ *h.
The main idea of this paper is to mimic this property
for spatially varying blur operators. We propose to ap-
proximate H by an operator A diagonal in the wavelet
domain :

Hu~ Hu
=PYrX¥y
=Y O W0n+ Y, Cin(Wjmu)Wjn
nez Jj<lp,n€Z

where (G} »)j» is a sequence of weights that should be
selected in order to provide “precise” approximations.
This approximation allows to compute an approxima-
tion of Hu in O(n?) arithmetic operations, which is
doable even for very large scale problems.

Such approximations have been deeply analyzed
from a theoretical point of view in various articles
or monographs (see e.g. (Beylkin et al., 1991; Coif-
man and Meyer, 1997)). However, we found very few

image processing applications in the literature. To our
knowledge, the closest practical application is dedica-
ted to the fast computation of image foveation (Chang
et al., 1999). However, this work is only adapted to
very particular kind of kernels K met in foveation that
do not correspond to our practical problems.

Since H is a linear operator in a Hilbert space, it
can be written as :

H=Y6vy",
where @ : [> — [? is characterized by the coefficients,

(ej,m.k,n)j,m,k.n = (<T\Vj,m7\|1k,n>)j7m’k’n .

In order to justify the proposed approach, we first
recall some theoretical results presented in (Beylkin
et al., 1991) that assess the decrease of 0, 1, away
from the diagonal (i.e. when |m—n| > 0 and |j —k| >
0). Then we provide an interpretation of the coeffi-
cients 6, in terms of amplitudes of the Fourier coef-
ficients of the local PSF.

3.1 Decay of ® Away from the Diagonal

In (Beylkin et al., 1991), it has been proved that,
for compactly supported wavelets possessing M va-
nishing moments and smoothly varying kernels, the
values of ® are small away from the diagonal in the
one and two-dimensional cases. Typical results are as
follow :

Theorem 1 ((Beylkin et al., 1991)). Suppose that
K (x,y)| € = and that K(x,y) is of class CY*! with

[x—y]

>

Cu

M M —
|0y K(x,y) + 0y K(x,y)| < x| (M)

where M denotes the number of vanishing moments of
V. Then 0}, i satisfies the following inequality :

1
|ej7m,k,n| <0 (H—]—HMH) .

Moreover, for compactly supported kernels K :
|ej,m,k,n| =0,
Sor sufficiently large |m — n|.

The authors also show that the operator norm
|H — WYOW*|| can be made arbitrarily small if © is
obtained by thresholding ® in such a way that only
O(n?) coefficients are kept. It roughly means that if K
is a smooth kernel, computing Hu can be performed
in O(n?) operations, rather than O(n*?), by making
use of the wavelet transform. In this work, rather than
considering sparse matrices ©, we use simpler diago-
nal matrices.



We illustrate these results experimentally in the
discrete setting on Figure 3. We consider an operator
H whose kernel is a two-dimensional Gaussian with
variances linearly increasing in the vertical direction,
see Figure 2(c). This operator applied to the mandrill
image results in the image Figure 2(b). The matrix ®
is shown on Figure 3. It is seen that ® is dominated
by its diagonal entries and that the coefficients away
from the diagonal decrease extremely fast (actually
much faster than the result in Theorem 1).
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(c) PSF at various locations

FIGURE 2 — Image blurred using the operator H. The kernel
K of the operator is a Gaussian which grows linearly in the
vertical direction.

3.2 Interpretation of the Diagonal
Values

In this paragraph, we show that the values G;, can
be interpreted as local frequency responses of H. We
assume that y is a compactly supported wavelet on
the interval [—, B].

Let us analyze the impulse response of A at point

X:
HS, = ¥YIW*5,
=Y 0n®D0pat Y, CiaVin(X)Wjn
nez J<lp,n€Z
= Z ¢10,n(x)¢10,n+ Z Gj,nwj,n(x)\vj,n;
ne”z J<l,
nek(x,j)
where

k(x, j) := {n € Z such that |2~ /x—n| < B}.

0.9

0.8

0.6

Yin

0.5

0.4

0.3

0.1

.
im

(a) In a linear scale

1e-1

1e-2

1e-3

1e-4

1e-5

1e-6

1e-7
Yim

(b) In alog; scale

FIGURE 3 — Matrix © for the variable operator illustrated
in Figure 2. This matrix is obtained using Daubechies 8 wa-
velets and a decomposition level J = 2.

The sets k(x, j) are represented in Figure 4 in the
two-dimensional case. They contain at most | 23| ele-
ments.

Now, if we assume that 6, varies little in k(x, j)
and satisfies 6, ~ G, we obtain :

PEPTS, >~ Y O (X)0sn

nek(x,ly)
+Y o ( Y \|/j7,,(x)\|;j7n> .
J<ly nek(x,j)



FIGURE 4 — The sets k(x, j) are indicated in orange at each
scale.

The local frequency response of H is thus

Prys,
22%M@;ﬁkn<2“%@@)
nez J<ly nek(x, j)

= L ual@bunt X 000t

nez J<lp

where o is a complex coefficient that depends on
the choice of W and y;(x) = vV2-/y(2/x). Since ;
is well localized in the frequency domain, the coeffi-
cient G 0; ; can be interpreted as a local frequency
attenuation in a certain frequency band that depends
solely on the scale j. This principle is illustrated in
Figure 5.

3.3 Spatial Regularity of the
Eigenvalues

A simple way to find a matrix ¥ such that H ~ H
consists in setting X = Diag(®). If the kernel K va-
ries sufficiently smoothly in space, the discrete values
(Gjn)nez also vary smoothly, meaning that G, ~
Gjn+1. This can be verified experimentally : Figure
6 represents the diagonal of ® for an operator H dis-
played in Figure 2(c) in the usual wavelet domain.
The eigenvalues vary smoothly in each sub-band. This
remark is central to understand the interpolation algo-
rithm proposed in the next section.

Also notice that the coefficients 6;, decrease
from the top to the bottom of the image at each scale.
It means that the high-frequencies are attenuated on
the image bottom. This clearly corresponds to the
operator H shown in Figure 2(c).
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FIGURE 5 — Local Fourier attenuation are determined by the
coefficients G y0j x.
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FIGURE 6 — Diagonal of the matrix ®.

3.4 Wavelet and Basis Choice

An important parameter in the proposed algorithm
is the mother wavelet y. According to Theorem 1,
y should have many vanishing moments for H to



approximate H correctly. This condition can be ve-
rified experimentally. In the following, we will al-
ways consider Daubechies 8 orthogonal wavelet bases
which appeared to produce good practical results.

It was shown in (Malgouyres, 2002; Kalifa et al.,
2003), that wavelet packet bases are more adapted to
deconvolution problems than standard wavelet bases.
The reason is that they provide more precise fre-
quency tilings, notably in the high frequencies. This
is illustrated in Figure 7. The frequency tiling of the
standard wavelet decomposition is much coarser than
that of a wavelet packet transform.

Finally, the non translation invariance of dis-
crete wavelets tend to produce ringing artifacts. They
can be reduced using redundant bases such as the
translation invariant wavelets. In this work we use
cycle spinning (Coifman and Donoho, 1995), which
consists in averaging wavelet transforms translated in
the set {0,1}¢. This transform is a tight frame with a
redundancy of 2.

(a) In a wavelet wasis

(b) In a wavelet packet basis

FIGURE 7 — Frequency tilings for Daubechies-8 wavelets
in the wavelet and wavelet packet basis. Each color corres-
ponds to the Fourier transform of a wavelet at a given scale.

4 OPERATOR
RECONSTRUCTION FROM
LOCALLY KNOWN PSF

In this section, we propose a method to recover the
matrix ¥ from the knowledge of local impulse res-
ponses. This setting corresponds to various practical
applications. In astronomy, stars may sometimes be
considered as Diracs. Their observation thus provides
the impulse response of the system K(x,-), where x
denotes the star location. In microscopy, micro-beads
may be inserted in the sample and provide the impulse
responses at locations spread in the whole image do-
main.

The problem tackled in this section is the recons-
truction of K everywhere, from the knowledge of
K(x;,-) at a few locations (x;)icq1,... mj- We assume
that two images are available :

— Animage

m
u= Z 6X,'7
i=1
that describes the Dirac locations.
— An image u, = Hu which provides the impulse
responses at locations x;.
Figure 8 illustrates two images u and u,. The Diracs
could be randomly located on the image rather than on
a uniform grid. We considered this simple setting for
experimental reasons. The number of known impulse
responses can also be considerably reduced as will be
shown later.

----------------
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() up =Hu
FIGURE 8 — Dirac map and the associated impulse res-

ponses. This information is used to reconstruct an approxi-
mation of the blurring operator H.

(a) The dirac map u

The knowledge of u, allows to reconstruct the ei-
genvalues G , of H only close to the known locations
x; in each sub-band. These eigenvalues should thus be
interpolated in order to recover K everywhere. Note
that this problem is not standard since is consists in in-
terpolating an operator eigenvalues and not an image.

Since the eigenvalues vary smoothly in space, we
propose to use bi-harmonic splines which are well
adapted to scattered data interpolation (Wahba, 1990).



The approximation problem we propose formulates as
the following variational problem :

Find ¥ € argmin || WZW*u — 1|3 +AR(Z), (3)

where A > 0 is a regularization parameter. We also

set :
RE) =Y lAs)[3,
J<l

where A denotes the discrete Laplacian and G; de-
notes the set of eigenvalues at scale j. This energy
provides the approximation of minimal curvature. It
is equivalent to using bi-harmonic splines (Wahba,
1990).

The quadratic structure of problem (3) allows the
use of conjugate gradient like methods for the minimi-
zation. We are currently investigating the use of pre-
conditionners in the wavelet domain for accelerating
the convergence.

We present approximation results in Figures 9 and
10. Figure 10 displays a interpolated matrix X. This
result can be evaluated by comparing it with the true
diagonal of © presented in Figure 6. Overall, the re-
construction leads to near perfect results. Figure 9
compares the interpolation provided by Fourier based
methods such as (Nagy and O’Leary, 1998) with the
proposed approach. Our method produces some ar-
tifacts, however, the proposed interpolation is rather
close to the reality in the image center. Note that this
result is obtained using knowing the PSF at only 4 lo-
cations in the plane. Deblurring an image with kernel
9(b) would be disastrous, since horizontal and verti-
cal frequencies would be enhanced, leading to strong
ringing artifacts.

S DEBLURRING ALGORITHM
AND RESULTS

5.1 Deblurring Method

In this section, we assume that the diagonal X has
been reconstructed using the method proposed in sec-
tion 4. We propose a total variation (TV) based algo-
rithm to tackle the deblurring problem. We suppose
that a degraded image v,, is obtained according to the
following discrete model :

v, = Hv+n,

where H : R" — R" is the spatially varying blur ope-
rator, v € R™ is the unaltered image and m € R isa
white Gaussian noise, 1 ~ A(0,6y1d,«). Our aim is
to recover v knowing vg. Since H and H are usually

L] [

(a) Exact PSF

(b) Linearly Interpolated PSF

(c) Our Interpolated PSF

FIGURE 9 — Operator reconstruction using different me-
thods. The operator is reconstructed using the information
available in the red rectangles.
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FIGURE 10 — The matrix X reconstructed using bi-harmonic

splines. It should be compared to the real diagonal presented
on Figure 6.

compact, the inverse problem of recovering v should
be regularized. We propose to use a standard total va-



riation based reconstruction approach. It reads :

Find argmin TV (v), 4)

VER”J,HFI\)fvnH%S(X

where o > 0 is a user fixed parameter and 7V (v) is the
isotropic total variation of v defined in the notation.
In settings where H is perfectly known, users should
set o = 62n. The proposed approach slightly differs
since total variation serves as a regularizer for both the
noise and the errors in the operator approximation. In
practice we found that setting o0 = (1 +¢€)o?n where
€ > 0 is a small parameter provides good experimental
results.
Problem (4) can be rewritten as :

min F(Av) +G(v), (5)
veR”d
where ., y ,
A: R" - Rdn % R"
e ()
Hv)’
F: R xR o R,
(1,52) = Hyl||1,z
Xy yz—vo <0 (72)
and

G=0.

This reformulation allows to use the primal-dual
algorithm proposed in ?? detailed in algorithm ??.

Algorithm 1: Primal-Dual Algorithm (Cham-
bolle and Pock, 2011)
Input:
€ : the desired precision ;
(x0,¥0) : a starting primal-dual pair ;
Output:
X : an approximate solution to the problem.
begin
Choose, 1,6 > 0,0 € [0,1];
k=0; v =vo;
while Convergence Criterion > € do
Y = (1 4+ 6dF*) 1 (y* + 6AZK) ;
A = (1 4+19G) ! (o6 +ta*y*
)fk-H = xk+1 +9(xk+1 —xk) 5
k=k+1;
end

end

This algorithm is easy to implement and it can be
shown to converge in O (). This rate is somehow op-
timal in the class of first order methods (Nemirovs-
kii and Yudin, 1979). The proximal operators of F*
and G are easy to compute analytically and we refer

the reader to (Combettes et al., 2006; Chambolle and

Pock, 2011) for more details. The steps sizes T and

o should satisfy 67 ||A||* < 1 for convergence, where

|A|| = max | ,|. In practice, this algorithm requires
jn

around 100 low cost iterations to provide satisfactory
results for the visual system. Note that  and A must
be applied to a vector at each iteration. This is perfor-
med in O(n) arithmetic operations due to the special

structure of H.

5.2 Results for Different Noise
Variances

Now we will present some results of the deblurring
algorithm.

We used the Mandrill Figure 11(a) rescaled in
[0,1] and blurred with an operator having a two-
dimensional Gaussian PSF with variance increasing
linearly in the vertical direction. It impulse responses
are displayed in 11(b). In Figures 12 and 13 we res-
pectively added a noise of variance 6y = 0 and oy =
3.1072.

In the case 6y = 0, Figure 12 shows that the algo-
rithm is able to recover thin details of the image even
in the coat and the beard of the Mandrill in the bottom
of the image. This highlights the fact that the approxi-
mation of H by H is sufficiently good for the sake of
deblurring.

In the case of a larger noise, 6y = 3.1072, Figure
13 shows that the image quality is improved but suf-
fers from the standard defects of total-variation based
regularizations : stair-case appears and thin details are
not recovered. Overall, these results confirm that the
proposed approximation is capable of producing nice
reconstruction results with low computational costs.

CONCLUSION

This paper contains various contributions. First, we
showed that spatially varying blur operators can be
well approximated by operators diagonal in the wave-
let domain. Second, we proposed an original approach
that allows to reconstruct blur operators when their
PSF is known only at a few discrete locations. Com-
pared to previously proposed approaches, this me-
thod allows a much wider class of interpolation al-
gorithms. In particular, we showed that bi-harmonic
splines interpolations produce near perfect results on
a few examples and outperform standard approaches.
Finally we presented preliminary deblurring results.
These results outline that the proposed approxima-



(b) The PSF

FIGURE 11 — The original Image and the impulse response
of the blurring operator.

tions provide results similar to what would be obtai-
ned with a perfect knowledge of the blur operator.

The proposed algorithm will be validated on real
data coming from emergent microscopes such as the
selective plane illumination microscope.
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(c) Deblurred Image, SNR = 29.02
FIGURE 12 — Restoration results for 6y = 0.
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